Jindou Zhang, Zhiwen Wang, Long Li, Kangkang Yang, Yanrong Lu
{"title":"Trajectory tracking control of autonomous vehicles based on event-triggered model predictive control","authors":"Jindou Zhang, Zhiwen Wang, Long Li, Kangkang Yang, Yanrong Lu","doi":"10.1049/itr2.12589","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a lateral control scheme based on event-triggered model predictive control for trajectory tracking of autonomous vehicles. Firstly, the augmentation system is constructed based on the known road curvature information, and the model predictive controller is utilized to obtain the optimal control sequence. Then, an event-triggered mechanism is introduced to improve the real-time performance of the control system. The strategy targets to reduce the computational complexity and solving frequency of the optimization problem. In addition, a contraction constraint is structured using the backstepping control strategy to ensure the stability of the control system. Finally, experiments are conducted through the CarSim/Simulink joint simulation platform, and compared with the traditional model predictive control, the method proposed in this paper has better tracking accuracy and improves the real-time performance of the control system.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2856-2868"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12589","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12589","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a lateral control scheme based on event-triggered model predictive control for trajectory tracking of autonomous vehicles. Firstly, the augmentation system is constructed based on the known road curvature information, and the model predictive controller is utilized to obtain the optimal control sequence. Then, an event-triggered mechanism is introduced to improve the real-time performance of the control system. The strategy targets to reduce the computational complexity and solving frequency of the optimization problem. In addition, a contraction constraint is structured using the backstepping control strategy to ensure the stability of the control system. Finally, experiments are conducted through the CarSim/Simulink joint simulation platform, and compared with the traditional model predictive control, the method proposed in this paper has better tracking accuracy and improves the real-time performance of the control system.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf