Mollugin Derivatives as Anti-Inflammatory Agents: Design, Synthesis, and NF-κB Inhibition

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuan-Liang Gao, Ming-Yue Li, Da-Yuan Wang, Shi-Ang Jin, Xin-Yu Ma, Xue-Jun Jin, Hu-Ri Piao
{"title":"Mollugin Derivatives as Anti-Inflammatory Agents: Design, Synthesis, and NF-κB Inhibition","authors":"Yuan-Liang Gao,&nbsp;Ming-Yue Li,&nbsp;Da-Yuan Wang,&nbsp;Shi-Ang Jin,&nbsp;Xin-Yu Ma,&nbsp;Xue-Jun Jin,&nbsp;Hu-Ri Piao","doi":"10.1111/cbdd.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nuclear factor κB (NF-κB) is a key inducible transcription factor that controls a large number of genes involved in inflammatory and immune processes. The entire inflammation-mediated process uses NF-κB as a hub, and inflammatory gene transcription and expression can be decreased by blocking the NF-κB signaling pathway, thereby reducing inflammatory damage. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation. Here, we designed and synthesized 27 mollugin derivatives and evaluated the anti-inflammatory activity against NF-κB transcription. Most of the compounds exhibited potent anti-inflammatory activity, and compound <b>5k</b> was the most potent with 81.77% inhibition after intraperitoneal administration, which was significantly more potent than mollugin (49.72%), ibuprofen (47.51%), and mesalazine (47.24%). Investigation of the mechanism of action indicated that <b>5k</b> down-regulated NF-κB expression, possibly by suppressing LPS-induced expression of the p65 protein. ADMET prediction analysis indicated that compounds <b>5h</b> and <b>5k</b> showed good pharmacokinetic properties. The relationship between the structures of the synthesized compounds and the NF-κB inhibitory activity was rationalized using molecular docking simulation experiments. Overall, these results provide an initial basis for the development of <b>5h</b> and <b>5k</b> as potential anti-inflammatory agents.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear factor κB (NF-κB) is a key inducible transcription factor that controls a large number of genes involved in inflammatory and immune processes. The entire inflammation-mediated process uses NF-κB as a hub, and inflammatory gene transcription and expression can be decreased by blocking the NF-κB signaling pathway, thereby reducing inflammatory damage. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation. Here, we designed and synthesized 27 mollugin derivatives and evaluated the anti-inflammatory activity against NF-κB transcription. Most of the compounds exhibited potent anti-inflammatory activity, and compound 5k was the most potent with 81.77% inhibition after intraperitoneal administration, which was significantly more potent than mollugin (49.72%), ibuprofen (47.51%), and mesalazine (47.24%). Investigation of the mechanism of action indicated that 5k down-regulated NF-κB expression, possibly by suppressing LPS-induced expression of the p65 protein. ADMET prediction analysis indicated that compounds 5h and 5k showed good pharmacokinetic properties. The relationship between the structures of the synthesized compounds and the NF-κB inhibitory activity was rationalized using molecular docking simulation experiments. Overall, these results provide an initial basis for the development of 5h and 5k as potential anti-inflammatory agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信