{"title":"Risk-based maximum speed advisory system for driving safety of connected and automated bus","authors":"Sehyun Tak, Sari Kim, Donghoun Lee","doi":"10.1049/itr2.12599","DOIUrl":null,"url":null,"abstract":"<p>Bus rapid transit (BRT) system is a cost-effective way to provide public transportation service. However, it faces some challenges such as reduced labour productivity and increasing fuel costs. One solution is introducing automated vehicles (AV) to reduce operational expenses. However, there are still limitations on completely replacing human drivers even in limited operational design domains (ODD). Furthermore, AVs often suffer from poor driving stability in some roadways, such as abrupt changes in road geometry. To enhance the driving safety of AV-based BRT services, this study develops a new connected and automated bus (CAB) system using a cloud-based traffic management centre with cooperative intelligent transportation systems. The proposed system introduces risk-based maximum speed advisory system (RMSAS), which controls the maximum advisory speed of CAB to reduce its driving risk. This research evaluates the performance of RMSAS by comparing it to other driving modes, such as human-driven vehicles and conventional AVs, based on real-world field operational tests. The result shows that the proposed system outperforms other driving modes in terms of driving risks, particularly in some road geometry-related ODDs. Hence, this research concludes that the proposed system can be applied to the AV-based BRT service for uprating its safety performance.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2896-2920"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12599","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Bus rapid transit (BRT) system is a cost-effective way to provide public transportation service. However, it faces some challenges such as reduced labour productivity and increasing fuel costs. One solution is introducing automated vehicles (AV) to reduce operational expenses. However, there are still limitations on completely replacing human drivers even in limited operational design domains (ODD). Furthermore, AVs often suffer from poor driving stability in some roadways, such as abrupt changes in road geometry. To enhance the driving safety of AV-based BRT services, this study develops a new connected and automated bus (CAB) system using a cloud-based traffic management centre with cooperative intelligent transportation systems. The proposed system introduces risk-based maximum speed advisory system (RMSAS), which controls the maximum advisory speed of CAB to reduce its driving risk. This research evaluates the performance of RMSAS by comparing it to other driving modes, such as human-driven vehicles and conventional AVs, based on real-world field operational tests. The result shows that the proposed system outperforms other driving modes in terms of driving risks, particularly in some road geometry-related ODDs. Hence, this research concludes that the proposed system can be applied to the AV-based BRT service for uprating its safety performance.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf