Niloofar Minbashi, Jiaxi Zhao, C. Tyler Dick, Markus Bohlin
{"title":"Enhancing freight train delay prediction with simulation-assisted machine learning","authors":"Niloofar Minbashi, Jiaxi Zhao, C. Tyler Dick, Markus Bohlin","doi":"10.1049/itr2.12573","DOIUrl":null,"url":null,"abstract":"<p>Boosting the rail freight modal share is an ambitious target in Europe and North America. Yards, where freight trains are arranged, can be crucial in realizing this target by reliable dispatching to the network. This paper predicts freight train departures by developing a simulation-assisted machine learning model with two concepts: general (adding all predictors at once) and step-wise (adding predictors as they become available in sub-yard operations) for hump yards with the conventional layout to provide a generalized model for European and North American contexts. The developed model is a decision tree algorithm, validated via 10-fold cross-validation. The model's performance on three data sets—a real-world European yard, a baseline simulation, and an ultimate randomness simulation for a comparable North American yard—shows a respective <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$R^2$</annotation>\n </semantics></math> of 0.90, 0.87, and 0.70. Step-wise inclusion of the predictors results differently for the real-world and simulation data. The global feature importance highlights maximum planned length, departure weekday, the number of arriving trains, and minimum arrival deviation as key predictors for the real-world data. For the simulation data, the most significant predictors are departure yard predictors, the number of arriving trains, and the maximum hump duration. Additionally, utilization rates—except for the receiving yard—enhance the predictions.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2359-2374"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Boosting the rail freight modal share is an ambitious target in Europe and North America. Yards, where freight trains are arranged, can be crucial in realizing this target by reliable dispatching to the network. This paper predicts freight train departures by developing a simulation-assisted machine learning model with two concepts: general (adding all predictors at once) and step-wise (adding predictors as they become available in sub-yard operations) for hump yards with the conventional layout to provide a generalized model for European and North American contexts. The developed model is a decision tree algorithm, validated via 10-fold cross-validation. The model's performance on three data sets—a real-world European yard, a baseline simulation, and an ultimate randomness simulation for a comparable North American yard—shows a respective of 0.90, 0.87, and 0.70. Step-wise inclusion of the predictors results differently for the real-world and simulation data. The global feature importance highlights maximum planned length, departure weekday, the number of arriving trains, and minimum arrival deviation as key predictors for the real-world data. For the simulation data, the most significant predictors are departure yard predictors, the number of arriving trains, and the maximum hump duration. Additionally, utilization rates—except for the receiving yard—enhance the predictions.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf