DBE-Net: A Dual-Branch Boundary Enhancement Network for Pathological Image Segmentation

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zefeng Liu, Zhenyu Liu
{"title":"DBE-Net: A Dual-Branch Boundary Enhancement Network for Pathological Image Segmentation","authors":"Zefeng Liu,&nbsp;Zhenyu Liu","doi":"10.1002/ima.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pathological image segmentation provides support for the accurate assessment of lesion area by precisely segmenting various tissues and cellular structures in pathological images. Due to the unclear boundaries between targets and backgrounds, as well as the information loss during upsampling and downsampling operations, it remains a challenging task to identify boundary details, especially in differentiating between adjacent tissues, minor lesions, or clustered cell nuclei. In this paper, a Dual-branch Boundary Enhancement Network (DBE-Net) is proposed to improve the sensitivity of the model to the boundary. Firstly, the proposed method includes a main task and an auxiliary task. The main task focuses on segmenting the target object and the auxiliary task is dedicated to extracting boundary information. Secondly, a feature processing architecture is established which includes three modules: Feature Preservation (FP), Feature Fusion (FF), and Hybrid Attention Fusion (HAF) module. The FP module and the FF module are used to provide original information for the encoder and fuse information from every layer of the decoder. The HAF is introduced to replace the skip connections between the encoder and decoder. Finally, a boundary-dependent loss function is designed to simultaneously optimize both tasks for the dual-branch network. The proposed loss function enhances the dependence of the main task on the boundary information supplied by the auxiliary task. The proposed method has been validated on three datasets, including Glas, CoCaHis, and CoNSep dataset.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Pathological image segmentation provides support for the accurate assessment of lesion area by precisely segmenting various tissues and cellular structures in pathological images. Due to the unclear boundaries between targets and backgrounds, as well as the information loss during upsampling and downsampling operations, it remains a challenging task to identify boundary details, especially in differentiating between adjacent tissues, minor lesions, or clustered cell nuclei. In this paper, a Dual-branch Boundary Enhancement Network (DBE-Net) is proposed to improve the sensitivity of the model to the boundary. Firstly, the proposed method includes a main task and an auxiliary task. The main task focuses on segmenting the target object and the auxiliary task is dedicated to extracting boundary information. Secondly, a feature processing architecture is established which includes three modules: Feature Preservation (FP), Feature Fusion (FF), and Hybrid Attention Fusion (HAF) module. The FP module and the FF module are used to provide original information for the encoder and fuse information from every layer of the decoder. The HAF is introduced to replace the skip connections between the encoder and decoder. Finally, a boundary-dependent loss function is designed to simultaneously optimize both tasks for the dual-branch network. The proposed loss function enhances the dependence of the main task on the boundary information supplied by the auxiliary task. The proposed method has been validated on three datasets, including Glas, CoCaHis, and CoNSep dataset.

DBE-Net:用于病理图像分割的双分支边界增强网络
病理图像分割通过对病理图像中的各种组织和细胞结构进行精确分割,为准确评估病变区域提供支持。由于目标和背景之间的边界不明确,以及在上采样和下采样操作过程中的信息丢失,识别边界细节仍然是一项具有挑战性的任务,特别是在区分邻近组织,小病变或聚集的细胞核时。为了提高模型对边界的敏感性,本文提出了一种双分支边界增强网络(DBE-Net)。首先,该方法包括一个主任务和一个辅助任务。主要任务是对目标物体进行分割,辅助任务是提取边界信息。其次,建立了特征处理体系,该体系包括特征保持(FP)、特征融合(FF)和混合注意融合(HAF)三个模块;FP模块和FF模块为编码器提供原始信息,并融合来自解码器各层的信息。引入HAF来取代编码器和解码器之间的跳线连接。最后,设计了一个边界相关的损失函数来同时优化双分支网络的两个任务。所提出的损失函数增强了主任务对辅助任务提供的边界信息的依赖性。该方法在Glas、CoCaHis和CoNSep三个数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信