Enhancing real-time traffic volume prediction: A two-step approach of object detection and time series modelling

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junwoo Lim, Juyeob Lee, Chaehee An, Eunil Park
{"title":"Enhancing real-time traffic volume prediction: A two-step approach of object detection and time series modelling","authors":"Junwoo Lim,&nbsp;Juyeob Lee,&nbsp;Chaehee An,&nbsp;Eunil Park","doi":"10.1049/itr2.12576","DOIUrl":null,"url":null,"abstract":"<p>A two-step framework that integrates real-time data collection with time series forecasting models for predicting traffic volume is proposed. In the first step, the framework utilizes live highway surveillance video data and YOLO-v7 object detector to construct accurate traffic volume data. In the second step, an ARIMA–LSTM time series model is applied to forecast future traffic volumes. Experimental results show that YOLO-v7 achieved a vehicle detection accuracy of over 93.30%, ensuring high precision in traffic volume data construction. The ARIMA–LSTM model demonstrated superior performance in traffic volume prediction, with a mean squared error of 87.97, root mean squared error of 10,388.57, and mean absolute error of 101.39. YOLO-v7's detection speed of 7.8 ms per frame further validates the feasibility of real-time data construction. The findings indicate that the combination of YOLO-v7 for vehicle detection and ARIMA–LSTM for traffic prediction is highly effective, offering a significant reduction in training time compared to more complex deep learning models while maintaining high prediction accuracy. This research presents a unified solution for traffic data collection and prediction, enhancing transportation infrastructure planning and optimizing traffic flow. Future work will focus on extending the prediction intervals and further refining the models to improve performance.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2744-2758"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12576","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A two-step framework that integrates real-time data collection with time series forecasting models for predicting traffic volume is proposed. In the first step, the framework utilizes live highway surveillance video data and YOLO-v7 object detector to construct accurate traffic volume data. In the second step, an ARIMA–LSTM time series model is applied to forecast future traffic volumes. Experimental results show that YOLO-v7 achieved a vehicle detection accuracy of over 93.30%, ensuring high precision in traffic volume data construction. The ARIMA–LSTM model demonstrated superior performance in traffic volume prediction, with a mean squared error of 87.97, root mean squared error of 10,388.57, and mean absolute error of 101.39. YOLO-v7's detection speed of 7.8 ms per frame further validates the feasibility of real-time data construction. The findings indicate that the combination of YOLO-v7 for vehicle detection and ARIMA–LSTM for traffic prediction is highly effective, offering a significant reduction in training time compared to more complex deep learning models while maintaining high prediction accuracy. This research presents a unified solution for traffic data collection and prediction, enhancing transportation infrastructure planning and optimizing traffic flow. Future work will focus on extending the prediction intervals and further refining the models to improve performance.

Abstract Image

加强实时交通流量预测:物体检测和时间序列建模两步法
提出了一种将实时数据采集与时间序列预测模型相结合的两步法交通量预测框架。首先,该框架利用公路实时监控视频数据和YOLO-v7目标探测器构建准确的交通量数据。第二步,采用ARIMA-LSTM时间序列模型预测未来交通量。实验结果表明,YOLO-v7的车辆检测准确率达到93.30%以上,保证了交通量数据构建的高精度。ARIMA-LSTM模型在交通量预测方面表现优异,均方误差为87.97,均方根误差为10388.57,平均绝对误差为101.39。YOLO-v7每帧7.8 ms的检测速度进一步验证了实时数据构建的可行性。研究结果表明,用于车辆检测的YOLO-v7和用于交通预测的ARIMA-LSTM的组合非常有效,与更复杂的深度学习模型相比,可以显著减少训练时间,同时保持较高的预测精度。本研究为交通数据采集和预测提供了统一的解决方案,增强了交通基础设施规划,优化了交通流。未来的工作将集中在扩展预测区间和进一步改进模型以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信