{"title":"Anomaly detection and confidence interval-based replacement in decay state coefficient of ship power system","authors":"Xingshan Chang, Xinping Yan, Bohua Qiu, Muheng Wei, Jie Liu, Hanhua Zhu","doi":"10.1049/itr2.12581","DOIUrl":null,"url":null,"abstract":"<p>The anomaly detection and predictive replacement of the degradation decay state coefficient (<i>D</i><sub>esc</sub>) of ship power system (SPS) are crucial for ensuring their operational safety and maintenance efficiency. This study introduces the YC3Model, a model based on a dynamic triple sliding window mechanism, and Gaussian process regression) to address this challenge. It combines the temporal variation characteristics of the decay state coefficient's original data, first-order, and second-order differential data in both normal and abnormal trend intervals. The model calculates three local statistical measures within each sliding window and employs the Z-score method for anomaly detection. The combination of three sliding windows reduces false positives and negatives, enhancing the precision of anomaly detection. For detected anomalies, Gaussian process regression is used for prediction and replacement, providing confidence intervals to increase the reliability of the predicted values. Experimental results demonstrate that the YC3Model exhibits superior anomaly detection accuracy and adaptability in the degradation process of SPS, surpassing traditional methods across a range of evaluation metrics. This confirms the potential of YC3Model in health monitoring and predictive maintenance of SPS, offering reliable data input for the intelligent operation and maintenance (IO&M) of SPS.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2409-2439"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12581","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12581","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The anomaly detection and predictive replacement of the degradation decay state coefficient (Desc) of ship power system (SPS) are crucial for ensuring their operational safety and maintenance efficiency. This study introduces the YC3Model, a model based on a dynamic triple sliding window mechanism, and Gaussian process regression) to address this challenge. It combines the temporal variation characteristics of the decay state coefficient's original data, first-order, and second-order differential data in both normal and abnormal trend intervals. The model calculates three local statistical measures within each sliding window and employs the Z-score method for anomaly detection. The combination of three sliding windows reduces false positives and negatives, enhancing the precision of anomaly detection. For detected anomalies, Gaussian process regression is used for prediction and replacement, providing confidence intervals to increase the reliability of the predicted values. Experimental results demonstrate that the YC3Model exhibits superior anomaly detection accuracy and adaptability in the degradation process of SPS, surpassing traditional methods across a range of evaluation metrics. This confirms the potential of YC3Model in health monitoring and predictive maintenance of SPS, offering reliable data input for the intelligent operation and maintenance (IO&M) of SPS.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf