Leveraging AI to improve health information access in the World's largest maternal mobile health program

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-12-10 DOI:10.1002/aaai.12206
Shresth Verma, Arshika Lalan, Paula Rodriguez Diaz, Panayiotis Danassis, Amrita Mahale, Kumar Madhu Sudan, Aparna Hegde, Milind Tambe, Aparna Taneja
{"title":"Leveraging AI to improve health information access in the World's largest maternal mobile health program","authors":"Shresth Verma,&nbsp;Arshika Lalan,&nbsp;Paula Rodriguez Diaz,&nbsp;Panayiotis Danassis,&nbsp;Amrita Mahale,&nbsp;Kumar Madhu Sudan,&nbsp;Aparna Hegde,&nbsp;Milind Tambe,&nbsp;Aparna Taneja","doi":"10.1002/aaai.12206","DOIUrl":null,"url":null,"abstract":"<p>Harnessing the wide-spread availability of cell phones, many nonprofits have launched mobile health (mHealth) programs to deliver information via voice or text to beneficiaries in underserved communities, with maternal and infant health being a key area of such mHealth programs. Unfortunately, dwindling listenership is a major challenge, requiring targeted interventions using limited resources. This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care – with over 3 million active subscribers at a time – launched by India's Ministry of Health and Family Welfare (MoHFW) and run by the non-profit ARMMAN. We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program through the strategic allocation of interventions to beneficiaries. Past work in a similar domain has focused on a much smaller scale mHealth program and used markovian restless multiarmed bandits to optimize a single limited intervention resource. However, this paper demonstrates the challenges in adopting a markovian approach in Kilkari; therefore, CHAHAK instead relies on non-markovian time-series restless bandits and optimizes multiple interventions to improve listenership. We use real Kilkari data from the Odisha state in India to show CHAHAK's effectiveness in harnessing multiple interventions to boost listenership, benefiting marginalized communities. When deployed CHAHAK will assist the largest maternal mHealth program to date.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"526-536"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12206","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing the wide-spread availability of cell phones, many nonprofits have launched mobile health (mHealth) programs to deliver information via voice or text to beneficiaries in underserved communities, with maternal and infant health being a key area of such mHealth programs. Unfortunately, dwindling listenership is a major challenge, requiring targeted interventions using limited resources. This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care – with over 3 million active subscribers at a time – launched by India's Ministry of Health and Family Welfare (MoHFW) and run by the non-profit ARMMAN. We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program through the strategic allocation of interventions to beneficiaries. Past work in a similar domain has focused on a much smaller scale mHealth program and used markovian restless multiarmed bandits to optimize a single limited intervention resource. However, this paper demonstrates the challenges in adopting a markovian approach in Kilkari; therefore, CHAHAK instead relies on non-markovian time-series restless bandits and optimizes multiple interventions to improve listenership. We use real Kilkari data from the Odisha state in India to show CHAHAK's effectiveness in harnessing multiple interventions to boost listenership, benefiting marginalized communities. When deployed CHAHAK will assist the largest maternal mHealth program to date.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信