Peiru Chen, Ximin Zhang, Wenbiao Wang, Gang Xu, Shijiao Dong, Meiqing Cai, Jing-Cheng Liu, Jun-Ling Song
{"title":"Binder-Free 3D Printed Polyurethane/Bi-MOFs Composites for Photocatalytic Degradation of Rhodamine-B","authors":"Peiru Chen, Ximin Zhang, Wenbiao Wang, Gang Xu, Shijiao Dong, Meiqing Cai, Jing-Cheng Liu, Jun-Ling Song","doi":"10.1002/cnma.202400469","DOIUrl":null,"url":null,"abstract":"<p>The modularization of metal-organic-frameworks (MOFs) powders is a crucial to bringing out the excellent properties of MOFs to industrial applications in water treatment, gas adsorption/separation and catalytic fields. To improve their practical application and recyclability, we propose a hybrid composite of biocompatible MOFs decorated on self-supported three-dimensional (3D) printed polyurethane acrylate (PUA) for wastewater treatment. In this study, we select Bi-based MOFs with good visible-light response and chemical stability as photocatalysts, two MOFs, bismuth gallate (Bi-GA) and bismuth ellagic acid (Bi-EA), are loaded into the mesh-like PUA template by in-situ growth method. And then, these two composites, PUA/Bi-GA and PUA/Bi-EA are used for the photocatalytic treatment of Rhodamine-B (RhB) dye. The results demonstrate that PUA/Bi-EA could reach the highest removal rate of 98.08 % under acidic conditions in 4 hours. The excellent performance should be attributed to unique structure that endow their high adsorption capacity for dyes, further, the adsorbed dye as a sensitizer enhances the utilization of sun-light. This study provides a new composite for advanced photocatalytic water treatment and other environmental purification.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400469","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The modularization of metal-organic-frameworks (MOFs) powders is a crucial to bringing out the excellent properties of MOFs to industrial applications in water treatment, gas adsorption/separation and catalytic fields. To improve their practical application and recyclability, we propose a hybrid composite of biocompatible MOFs decorated on self-supported three-dimensional (3D) printed polyurethane acrylate (PUA) for wastewater treatment. In this study, we select Bi-based MOFs with good visible-light response and chemical stability as photocatalysts, two MOFs, bismuth gallate (Bi-GA) and bismuth ellagic acid (Bi-EA), are loaded into the mesh-like PUA template by in-situ growth method. And then, these two composites, PUA/Bi-GA and PUA/Bi-EA are used for the photocatalytic treatment of Rhodamine-B (RhB) dye. The results demonstrate that PUA/Bi-EA could reach the highest removal rate of 98.08 % under acidic conditions in 4 hours. The excellent performance should be attributed to unique structure that endow their high adsorption capacity for dyes, further, the adsorbed dye as a sensitizer enhances the utilization of sun-light. This study provides a new composite for advanced photocatalytic water treatment and other environmental purification.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.