Dynamic Multiblock Regression for Process Modelling

IF 2.3 4区 化学 Q1 SOCIAL WORK
Marco Cattaldo, Alberto Ferrer, Ingrid Måge
{"title":"Dynamic Multiblock Regression for Process Modelling","authors":"Marco Cattaldo,&nbsp;Alberto Ferrer,&nbsp;Ingrid Måge","doi":"10.1002/cem.3618","DOIUrl":null,"url":null,"abstract":"<p>The study introduces three novel strategies for incorporating capabilities for dynamic modelling into multiblock regression methods by integrating sequentially orthogonalised partial least squares (SO-PLS) with different dynamic modelling techniques. The study evaluates these strategies using synthetic datasets and an industrial example, comparing their performance in predictive ability, identification of process dynamics, and quantification of block contributions. Results suggest that these approaches can effectively model the dynamics with performance comparable to state-of-the-art methods, providing, at the same time, insight into the dynamic order and block contributions. One of the strategies, sequentially orthogonalised dynamic augmented (SODA)–PLS, shows promise by ensuring that redundant information in the time dimension is not included, resulting in simpler and more easily interpretable dynamic models. These multiblock dynamic regression strategies have potential applications for improved process understanding in industrial settings, especially where multiple data sources and inherent time dynamics are present.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3618","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3618","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

The study introduces three novel strategies for incorporating capabilities for dynamic modelling into multiblock regression methods by integrating sequentially orthogonalised partial least squares (SO-PLS) with different dynamic modelling techniques. The study evaluates these strategies using synthetic datasets and an industrial example, comparing their performance in predictive ability, identification of process dynamics, and quantification of block contributions. Results suggest that these approaches can effectively model the dynamics with performance comparable to state-of-the-art methods, providing, at the same time, insight into the dynamic order and block contributions. One of the strategies, sequentially orthogonalised dynamic augmented (SODA)–PLS, shows promise by ensuring that redundant information in the time dimension is not included, resulting in simpler and more easily interpretable dynamic models. These multiblock dynamic regression strategies have potential applications for improved process understanding in industrial settings, especially where multiple data sources and inherent time dynamics are present.

Abstract Image

过程建模的动态多块回归
该研究介绍了三种新的策略,通过将顺序正交偏最小二乘(SO-PLS)与不同的动态建模技术相结合,将动态建模能力纳入多块回归方法。该研究使用合成数据集和一个工业实例来评估这些策略,比较它们在预测能力、过程动态识别和区块贡献量化方面的表现。结果表明,这些方法可以有效地模拟动态,其性能与最先进的方法相当,同时提供了对动态顺序和块贡献的洞察。其中一种策略,顺序正交化动态增强(SODA) -PLS,通过确保不包括时间维度上的冗余信息,从而产生更简单和更容易解释的动态模型,显示出了希望。这些多块动态回归策略在工业环境中有潜在的应用,可以提高对过程的理解,特别是在存在多个数据源和固有时间动态的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信