Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
Pasupuleti Thejasree, Natarajan Manikandan, Neeraj Sunheriya, Jayant Giri, Rajkumar Chadge, T. Sathish, Ajay Kumar, Muhammad Imam Ammarullah
{"title":"Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications","authors":"Pasupuleti Thejasree,&nbsp;Natarajan Manikandan,&nbsp;Neeraj Sunheriya,&nbsp;Jayant Giri,&nbsp;Rajkumar Chadge,&nbsp;T. Sathish,&nbsp;Ajay Kumar,&nbsp;Muhammad Imam Ammarullah","doi":"10.1049/cim2.70015","DOIUrl":null,"url":null,"abstract":"<p>Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信