Pasupuleti Thejasree, Natarajan Manikandan, Neeraj Sunheriya, Jayant Giri, Rajkumar Chadge, T. Sathish, Ajay Kumar, Muhammad Imam Ammarullah
{"title":"Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications","authors":"Pasupuleti Thejasree, Natarajan Manikandan, Neeraj Sunheriya, Jayant Giri, Rajkumar Chadge, T. Sathish, Ajay Kumar, Muhammad Imam Ammarullah","doi":"10.1049/cim2.70015","DOIUrl":null,"url":null,"abstract":"<p>Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).