A submodular optimization approach to trustworthy loan approval automation

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-10-01 DOI:10.1002/aaai.12195
Kyungsik Lee, Hana Yoo, Sumin Shin, Wooyoung Kim, Yeonung Baek, Hyunjin Kang, Jaehyun Kim, Kee-Eung Kim
{"title":"A submodular optimization approach to trustworthy loan approval automation","authors":"Kyungsik Lee,&nbsp;Hana Yoo,&nbsp;Sumin Shin,&nbsp;Wooyoung Kim,&nbsp;Yeonung Baek,&nbsp;Hyunjin Kang,&nbsp;Jaehyun Kim,&nbsp;Kee-Eung Kim","doi":"10.1002/aaai.12195","DOIUrl":null,"url":null,"abstract":"<p>In the field of finance, the underwriting process is an essential step in evaluating every loan application. During this stage, the borrowers' creditworthiness and ability to repay the loan are assessed to ultimately decide whether to approve the loan application. One of the core components of underwriting is credit scoring, in which the probability of default is estimated. As such, there has been significant progress in enhancing the predictive accuracy of credit scoring models through the use of machine learning, but there still exists a need to ultimately construct an approval rule that takes into consideration additional criteria beyond the score itself. This construction process is traditionally done manually to ensure that the approval rule remains interpretable to humans. In this paper, we outline an automated system for optimizing a rule-based system for approving loan applications, which has been deployed at Hyundai Capital Services (HCS). The main challenge lays in creating a high-quality rule base that is simultaneously simple enough to be interpretable by risk analysts as well as customers, since the approval decision should be easily understandable. We addressed this challenge through principled submodular optimization. The deployment of our system has led to a 14% annual growth in the volume of loan services at HCS, while maintaining the target bad rate, and has resulted in the approval of customers who might have otherwise been rejected.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"502-513"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12195","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of finance, the underwriting process is an essential step in evaluating every loan application. During this stage, the borrowers' creditworthiness and ability to repay the loan are assessed to ultimately decide whether to approve the loan application. One of the core components of underwriting is credit scoring, in which the probability of default is estimated. As such, there has been significant progress in enhancing the predictive accuracy of credit scoring models through the use of machine learning, but there still exists a need to ultimately construct an approval rule that takes into consideration additional criteria beyond the score itself. This construction process is traditionally done manually to ensure that the approval rule remains interpretable to humans. In this paper, we outline an automated system for optimizing a rule-based system for approving loan applications, which has been deployed at Hyundai Capital Services (HCS). The main challenge lays in creating a high-quality rule base that is simultaneously simple enough to be interpretable by risk analysts as well as customers, since the approval decision should be easily understandable. We addressed this challenge through principled submodular optimization. The deployment of our system has led to a 14% annual growth in the volume of loan services at HCS, while maintaining the target bad rate, and has resulted in the approval of customers who might have otherwise been rejected.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信