A submodular optimization approach to trustworthy loan approval automation

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-10-01 DOI:10.1002/aaai.12195
Kyungsik Lee, Hana Yoo, Sumin Shin, Wooyoung Kim, Yeonung Baek, Hyunjin Kang, Jaehyun Kim, Kee-Eung Kim
{"title":"A submodular optimization approach to trustworthy loan approval automation","authors":"Kyungsik Lee,&nbsp;Hana Yoo,&nbsp;Sumin Shin,&nbsp;Wooyoung Kim,&nbsp;Yeonung Baek,&nbsp;Hyunjin Kang,&nbsp;Jaehyun Kim,&nbsp;Kee-Eung Kim","doi":"10.1002/aaai.12195","DOIUrl":null,"url":null,"abstract":"<p>In the field of finance, the underwriting process is an essential step in evaluating every loan application. During this stage, the borrowers' creditworthiness and ability to repay the loan are assessed to ultimately decide whether to approve the loan application. One of the core components of underwriting is credit scoring, in which the probability of default is estimated. As such, there has been significant progress in enhancing the predictive accuracy of credit scoring models through the use of machine learning, but there still exists a need to ultimately construct an approval rule that takes into consideration additional criteria beyond the score itself. This construction process is traditionally done manually to ensure that the approval rule remains interpretable to humans. In this paper, we outline an automated system for optimizing a rule-based system for approving loan applications, which has been deployed at Hyundai Capital Services (HCS). The main challenge lays in creating a high-quality rule base that is simultaneously simple enough to be interpretable by risk analysts as well as customers, since the approval decision should be easily understandable. We addressed this challenge through principled submodular optimization. The deployment of our system has led to a 14% annual growth in the volume of loan services at HCS, while maintaining the target bad rate, and has resulted in the approval of customers who might have otherwise been rejected.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"502-513"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12195","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of finance, the underwriting process is an essential step in evaluating every loan application. During this stage, the borrowers' creditworthiness and ability to repay the loan are assessed to ultimately decide whether to approve the loan application. One of the core components of underwriting is credit scoring, in which the probability of default is estimated. As such, there has been significant progress in enhancing the predictive accuracy of credit scoring models through the use of machine learning, but there still exists a need to ultimately construct an approval rule that takes into consideration additional criteria beyond the score itself. This construction process is traditionally done manually to ensure that the approval rule remains interpretable to humans. In this paper, we outline an automated system for optimizing a rule-based system for approving loan applications, which has been deployed at Hyundai Capital Services (HCS). The main challenge lays in creating a high-quality rule base that is simultaneously simple enough to be interpretable by risk analysts as well as customers, since the approval decision should be easily understandable. We addressed this challenge through principled submodular optimization. The deployment of our system has led to a 14% annual growth in the volume of loan services at HCS, while maintaining the target bad rate, and has resulted in the approval of customers who might have otherwise been rejected.

Abstract Image

可信赖贷款审批自动化的子模块优化方法
在金融领域,承销过程是评估每一笔贷款申请的重要步骤。在此阶段,评估借款人的信誉和偿还贷款的能力,以最终决定是否批准贷款申请。承保的核心组成部分之一是信用评分,其中估计了违约的可能性。因此,通过使用机器学习,在提高信用评分模型的预测准确性方面已经取得了重大进展,但仍然需要最终构建一个考虑分数本身之外的其他标准的审批规则。这个构造过程传统上是手动完成的,以确保审批规则仍然对人类是可解释的。在本文中,我们概述了一个自动化系统,用于优化基于规则的系统,以批准贷款申请,该系统已部署在现代资本服务公司(HCS)。主要的挑战在于创建一个高质量的规则基础,它同时足够简单,可以被风险分析师和客户解释,因为批准决定应该很容易理解。我们通过原则性的子模块优化解决了这一挑战。我们系统的部署使HCS的贷款业务量每年增长14%,同时保持了目标不良率,并获得了可能被拒绝的客户的认可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信