A Simulation Study of the Effects of Additive, Multiplicative, Correlated, and Uncorrelated Errors on Principal Component Analysis

IF 2.3 4区 化学 Q1 SOCIAL WORK
Edoardo Saccenti, Marieke E. Timmerman, José Camacho
{"title":"A Simulation Study of the Effects of Additive, Multiplicative, Correlated, and Uncorrelated Errors on Principal Component Analysis","authors":"Edoardo Saccenti,&nbsp;Marieke E. Timmerman,&nbsp;José Camacho","doi":"10.1002/cem.3595","DOIUrl":null,"url":null,"abstract":"<p>Measurement errors are ubiquitous in all experimental sciences. Depending on the particular experimental platform used to acquire data, different types of errors are introduced, amounting to an admixture of additive and multiplicative error components that can be uncorrelated or correlated. In this paper, we investigate the effect of different types of experimental error on the recovery of the subspace with principal component analysis (PCA) using numerical simulations. Specifically, we assessed how different error characteristics (variance, correlation, and correlation structure), loading structures, and data distributions influence the accuracy to estimate an error-free (true) subspace from sampled data with PCA. Quality was assessed in terms of the mean squared reconstruction error and the congruence to the error-free loadings, using the pseudorank and adjusting for rotational ambiguity. Analysis of variance reveals that the error variance, error correlation structure, and their interaction with the loading structure are the factors mostly affecting quality of loading estimation from sampled data. We advocate for the need to characterize and assess the nature of measurement error and the need to adapt formulations of PCA that can explicitly take into account error structures in the model fitting.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3595","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement errors are ubiquitous in all experimental sciences. Depending on the particular experimental platform used to acquire data, different types of errors are introduced, amounting to an admixture of additive and multiplicative error components that can be uncorrelated or correlated. In this paper, we investigate the effect of different types of experimental error on the recovery of the subspace with principal component analysis (PCA) using numerical simulations. Specifically, we assessed how different error characteristics (variance, correlation, and correlation structure), loading structures, and data distributions influence the accuracy to estimate an error-free (true) subspace from sampled data with PCA. Quality was assessed in terms of the mean squared reconstruction error and the congruence to the error-free loadings, using the pseudorank and adjusting for rotational ambiguity. Analysis of variance reveals that the error variance, error correlation structure, and their interaction with the loading structure are the factors mostly affecting quality of loading estimation from sampled data. We advocate for the need to characterize and assess the nature of measurement error and the need to adapt formulations of PCA that can explicitly take into account error structures in the model fitting.

Abstract Image

主成分分析中加法误差、乘法误差、相关误差和非相关误差影响的模拟研究
测量误差在所有实验科学中都是普遍存在的。根据用于获取数据的特定实验平台,引入了不同类型的误差,相当于可加性和乘法误差成分的混合物,可以是不相关的,也可以是相关的。本文通过数值模拟研究了不同实验误差对主成分分析(PCA)恢复子空间的影响。具体来说,我们评估了不同的误差特征(方差、相关性和相关结构)、加载结构和数据分布如何影响PCA从采样数据中估计无误差(真实)子空间的准确性。使用伪秩和旋转模糊度调整,根据均方重构误差和与无误差负载的一致性来评估质量。方差分析表明,误差方差、误差相关结构及其与加载结构的相互作用是影响采样数据加载估计质量的主要因素。我们主张需要表征和评估测量误差的性质,需要适应PCA的公式,可以明确地考虑到模型拟合中的误差结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信