{"title":"Nonreciprocal mechanical squeezing in cavity magnomechanics","authors":"Hao-Tian Wu, Ping-Chi Ge, Xue Han, Hong-Fu Wang, Shou Zhang","doi":"10.1140/epjqt/s40507-024-00301-6","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a scheme to achieve nonreciprocal mechanical squeezing in a hybrid Kerr-modified cavity magnomechanical system, where the magnon mode is driven by two-tone microwave fields. The nonreciprocity originates from the magnon Kerr effect. Strong mechanical squeezing beyond the 3 dB limit can be nonreciprocally generated by adjusting the magnon frequency detuning, effective magnomechanical coupling strength, as well as the damping of the oscillator and the dissipation of the cavity. Importantly, the proposed scheme is robust against environmental thermal noise and system dissipation, ensuring its feasibility under current experimental conditions. This work may pave the way for the development of nonreciprocal quantum devices, such as isolators and circulators. Furthermore, the ability to achieve such robust mechanical squeezing has significant implications for advancing quantum precision measurements in metrology and sensing, offering new opportunities for exploring quantum-enhanced technologies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00301-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00301-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a scheme to achieve nonreciprocal mechanical squeezing in a hybrid Kerr-modified cavity magnomechanical system, where the magnon mode is driven by two-tone microwave fields. The nonreciprocity originates from the magnon Kerr effect. Strong mechanical squeezing beyond the 3 dB limit can be nonreciprocally generated by adjusting the magnon frequency detuning, effective magnomechanical coupling strength, as well as the damping of the oscillator and the dissipation of the cavity. Importantly, the proposed scheme is robust against environmental thermal noise and system dissipation, ensuring its feasibility under current experimental conditions. This work may pave the way for the development of nonreciprocal quantum devices, such as isolators and circulators. Furthermore, the ability to achieve such robust mechanical squeezing has significant implications for advancing quantum precision measurements in metrology and sensing, offering new opportunities for exploring quantum-enhanced technologies.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.