Simple Model of the Evolution of Magnetic and Kinetic Energy of the Geodynamo

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
S. V. Starchenko
{"title":"Simple Model of the Evolution of Magnetic and Kinetic Energy of the Geodynamo","authors":"S. V. Starchenko","doi":"10.1134/S0016793224600759","DOIUrl":null,"url":null,"abstract":"<p>The induction and momentum equations are simplified to a dynamical system for the kinetic and magnetic energies in Earth’s core. Stable stationary points of this system give a geomagnetic field of ~10 mT and the cosecant of the angle between the magnetic field vector and fluid velocity vector is on average about 500 at a known speed of ~1 mm/s and a generally accepted dynamo power of ~1 TW. With a generally known typical geomagnetic time on the order of 1000 years, harmonic secular variations on the order of several decades and rapid exponential changes on the order of several months, possibly associated with jerks, were obtained. All this agrees well with dynamo theory, paleomagnetic reconstructions, numerical modeling, and observations. A geomagnetic energy of ~10 mJ/kg is four orders of magnitude greater than the kinetic energy. Under conditions of such dominant magnetic energy, an analytical solution was obtained, which over time converges to stable stationary points. Apparently unlikely catastrophes with virtually zero magnetic energy near partially stable stationary points are discussed.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"890 - 896"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600759","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The induction and momentum equations are simplified to a dynamical system for the kinetic and magnetic energies in Earth’s core. Stable stationary points of this system give a geomagnetic field of ~10 mT and the cosecant of the angle between the magnetic field vector and fluid velocity vector is on average about 500 at a known speed of ~1 mm/s and a generally accepted dynamo power of ~1 TW. With a generally known typical geomagnetic time on the order of 1000 years, harmonic secular variations on the order of several decades and rapid exponential changes on the order of several months, possibly associated with jerks, were obtained. All this agrees well with dynamo theory, paleomagnetic reconstructions, numerical modeling, and observations. A geomagnetic energy of ~10 mJ/kg is four orders of magnitude greater than the kinetic energy. Under conditions of such dominant magnetic energy, an analytical solution was obtained, which over time converges to stable stationary points. Apparently unlikely catastrophes with virtually zero magnetic energy near partially stable stationary points are discussed.

地球发电机磁力和动能演化的简单模型
将感应和动量方程简化为地核动能和磁能的动力系统。在已知的~1 mm/s的速度和一般接受的~1 TW的发电机功率下,该系统的稳定静止点给出了~10 mT的地磁场,磁场矢量与流体速度矢量之间的夹角的余割平均约为500。一般已知的典型地磁时间为1000年左右,几十年左右的调和长期变化和几个月左右的快速指数变化,可能与抽搐有关。所有这些都与发电机理论、古地磁重建、数值模拟和观测结果相吻合。10兆焦耳/千克的地磁能量比动能大4个数量级。在这样的优势磁能条件下,得到了一个解析解,随着时间的推移,它收敛于稳定的平稳点。讨论了在部分稳定的平稳点附近磁能几乎为零的不太可能发生的灾难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信