Intensive Substorms during the Main Phase of the Magnetic Storm on March 23–24, 2023

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
L. I. Gromova, N. G. Kleimenova, S. V. Gromov, K. K. Kanonidi, V. G. Petrov, L. M. Malysheva
{"title":"Intensive Substorms during the Main Phase of the Magnetic Storm on March 23–24, 2023","authors":"L. I. Gromova,&nbsp;N. G. Kleimenova,&nbsp;S. V. Gromov,&nbsp;K. K. Kanonidi,&nbsp;V. G. Petrov,&nbsp;L. M. Malysheva","doi":"10.1134/S0016793224600772","DOIUrl":null,"url":null,"abstract":"<p>Here we studied the planetary features of the spatiotemporal distribution of ionospheric electrojets recorded in the onset of a substorm and in time on the activity maximum of three very intense substorms (with an <i>AL-</i>index from –1200 to –1700 nT) observed during the main phase of the strong magnetic storm on March 23−24, 2023. We have analyzed the substorms by applying the global maps of the planetary distribution of high-latitude ionospheric currents, compiled from simultaneous magnetic measurements on 66 low-orbit satellites of the AMPERE project, as well as ground-based magnetograms from the Scandinavian IMAGE profile and mid-latitude IZMIRAN stations located in the same longitudinal region. It was established that the onset of all the studied substorms on the IMAGE meridian was accompanied by the development of a nighttime current vortex with clockwise rotation, which is an indicator of an increase in downward field-aligned currents. The ground-based mid-latitude observations at the IZMIRAN station network confirmed that the center of the current wedge of the substorm was located in the nighttime sector significantly east of the IMAGE meridian. In the time of the substorm intensity maximum, a similar but more extensive current vortex was observed in the morning sector, which is probably typical of intense substorms.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"881 - 889"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600772","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Here we studied the planetary features of the spatiotemporal distribution of ionospheric electrojets recorded in the onset of a substorm and in time on the activity maximum of three very intense substorms (with an AL-index from –1200 to –1700 nT) observed during the main phase of the strong magnetic storm on March 23−24, 2023. We have analyzed the substorms by applying the global maps of the planetary distribution of high-latitude ionospheric currents, compiled from simultaneous magnetic measurements on 66 low-orbit satellites of the AMPERE project, as well as ground-based magnetograms from the Scandinavian IMAGE profile and mid-latitude IZMIRAN stations located in the same longitudinal region. It was established that the onset of all the studied substorms on the IMAGE meridian was accompanied by the development of a nighttime current vortex with clockwise rotation, which is an indicator of an increase in downward field-aligned currents. The ground-based mid-latitude observations at the IZMIRAN station network confirmed that the center of the current wedge of the substorm was located in the nighttime sector significantly east of the IMAGE meridian. In the time of the substorm intensity maximum, a similar but more extensive current vortex was observed in the morning sector, which is probably typical of intense substorms.

Abstract Image

2023 年 3 月 23-24 日磁暴主阶段的强烈次风暴
本文研究了2023年3月23 ~ 24日强磁暴主期观测到的电离层电喷流在亚暴开始时的时空分布特征和三次极强亚暴(al指数为-1200 ~ -1700 nT)活动最大值的时间特征。我们利用amere项目66颗低轨道卫星同时进行的磁场测量所编制的高纬度电离层电流全球分布图,以及位于同一纵向区域的斯堪的纳维亚IMAGE剖面和中纬度IZMIRAN站的地面磁图,对亚暴进行了分析。结果表明,所有研究的亚暴在IMAGE子午线上的发生都伴随着一个顺时针旋转的夜间流涡的发展,这是向下场向流增加的标志。IZMIRAN台站网络的地面中纬度观测证实,亚风暴当前楔体的中心位于IMAGE子午线以东的夜间区域。在亚暴强度最大时,在上午扇区观测到一个类似但范围更广的流涡,这可能是典型的强亚暴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信