Influence of Processes on the Sun and in the Interplanetary Medium on the Solar Proton Event on March 30, 2022

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
N. A. Vlasova, G. A. Bazilevskaya, E. A. Ginzburg, E. I. Daibog, V. V. Kalegaev, K. B. Kaportseva, Yu. I. Logachev, I. N. Myagkova
{"title":"Influence of Processes on the Sun and in the Interplanetary Medium on the Solar Proton Event on March 30, 2022","authors":"N. A. Vlasova,&nbsp;G. A. Bazilevskaya,&nbsp;E. A. Ginzburg,&nbsp;E. I. Daibog,&nbsp;V. V. Kalegaev,&nbsp;K. B. Kaportseva,&nbsp;Yu. I. Logachev,&nbsp;I. N. Myagkova","doi":"10.1134/S001679322460084X","DOIUrl":null,"url":null,"abstract":"<p>The article presents the results of a comparative analysis of the solar proton event on March 30, 2022, which has an unusual time profile of solar proton fluxes, and the previous and subsequent solar proton events (March 28, 2022, and April 02, 2022). Increases in energetic proton fluxes in the interplanetary and near-Earth space are associated with successive solar X-ray flares M4.0, X1.3, and M3.9 and three halo-type coronal mass ejections. The study was based on experimental data obtained from spacecraft located in the interplanetary space (ACE, WIND, STEREO A, and DSCOVR), in a circular polar orbit at an altitude of 850 km (Meteor-M2) and in geostationary orbit (GOES-16, Electro-L2). An explanation has been proposed for the specific features of the energetic proton flux profile in the solar proton event on March 30, 2022: protons accelerated in the flare on March 30, 2022 were partially screened by an interplanetary coronal mass ejection, the source of which was the explosive processes on the Sun on March 28, 2022; late detection of maximum proton fluxes, simultaneous for particles of different energies, is due to the arrival of particle fluxes inside an interplanetary coronal mass ejection. The spatial distribution of solar protons in near-Earth orbit was similar to the distribution at the Lagrange point <i>L1</i> but with a delay of ~50 min.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"802 - 813"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S001679322460084X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the results of a comparative analysis of the solar proton event on March 30, 2022, which has an unusual time profile of solar proton fluxes, and the previous and subsequent solar proton events (March 28, 2022, and April 02, 2022). Increases in energetic proton fluxes in the interplanetary and near-Earth space are associated with successive solar X-ray flares M4.0, X1.3, and M3.9 and three halo-type coronal mass ejections. The study was based on experimental data obtained from spacecraft located in the interplanetary space (ACE, WIND, STEREO A, and DSCOVR), in a circular polar orbit at an altitude of 850 km (Meteor-M2) and in geostationary orbit (GOES-16, Electro-L2). An explanation has been proposed for the specific features of the energetic proton flux profile in the solar proton event on March 30, 2022: protons accelerated in the flare on March 30, 2022 were partially screened by an interplanetary coronal mass ejection, the source of which was the explosive processes on the Sun on March 28, 2022; late detection of maximum proton fluxes, simultaneous for particles of different energies, is due to the arrival of particle fluxes inside an interplanetary coronal mass ejection. The spatial distribution of solar protons in near-Earth orbit was similar to the distribution at the Lagrange point L1 but with a delay of ~50 min.

Abstract Image

太阳上和行星际介质中的过程对 2022 年 3 月 30 日太阳质子事件的影响
本文介绍了2022年3月30日太阳质子事件与之前和之后的太阳质子事件(2022年3月28日和2022年4月2日)的比较分析结果,该事件具有不同寻常的太阳质子通量时间剖面。行星际和近地空间高能质子通量的增加与连续的太阳x射线耀斑M4.0、X1.3和M3.9以及三次晕状日冕物质抛射有关。该研究基于位于行星际空间的航天器(ACE、WIND、STEREO A和DSCOVR)、海拔850公里的圆形极地轨道(Meteor-M2)和地球静止轨道(GOES-16、Electro-L2)获得的实验数据。对2022年3月30日太阳质子事件中高能质子通量剖面的具体特征提出了一种解释:2022年3月30日耀斑中加速的质子部分被星际日冕物质抛射遮挡,其来源是2022年3月28日太阳的爆炸过程;最大质子通量的检测较晚,同时对不同能量的粒子,是由于粒子通量在行星际日冕物质抛射中到达。太阳质子在近地轨道上的空间分布与拉格朗日点L1的分布相似,但存在~50 min的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信