{"title":"Mechanisms of Zebra Pattern Generation in Solar Radio Emission on the Background of Complex Dynamic Spectra","authors":"G. P. Chernov, V. V. Fomichev","doi":"10.1134/S0016793224600851","DOIUrl":null,"url":null,"abstract":"<p>The discussion about the origin of the zebra pattern has been going on for more than 50 years. In many papers it is usually postulated that the double plasma resonance mechanism always works in the presence of fast particles in the magnetic trap. Due to a number of difficulties encountered by this mechanism, works on its improvement began to appear, mainly in a dozen papers by Karlický and Yasnov, where the whole discussion is based on variability of the ratio of the magnetic field and density height scales and the assumption of some plasma turbulence in the source. Here we show possibilities of an alternative model of the interaction between plasma waves and whistlers. Several phenomena were selected in which it is clear that the ratio of height scales does not change in the magnetic loop as the source of the zebra pattern. It is shown that all the main details of the sporadic zebra pattern in the phenomenon of August 1, 2010 (and in many other phenomena), can be explained within the framework of a unified model of zebra patterns and radio fibers (fiber bursts) in the interaction of plasma waves with whistlers. The main changes in the zebra pattern stripes are caused by scattering of fast particles by whistlers leading to switching of the whistler instability from the normal Doppler effect to the anomalous one. In the end, possibilities of laboratory experiments are considered and the solar zebra pattern is compared with similar stripes in the decameter radio emission of Jupiter.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 6","pages":"793 - 801"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600851","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The discussion about the origin of the zebra pattern has been going on for more than 50 years. In many papers it is usually postulated that the double plasma resonance mechanism always works in the presence of fast particles in the magnetic trap. Due to a number of difficulties encountered by this mechanism, works on its improvement began to appear, mainly in a dozen papers by Karlický and Yasnov, where the whole discussion is based on variability of the ratio of the magnetic field and density height scales and the assumption of some plasma turbulence in the source. Here we show possibilities of an alternative model of the interaction between plasma waves and whistlers. Several phenomena were selected in which it is clear that the ratio of height scales does not change in the magnetic loop as the source of the zebra pattern. It is shown that all the main details of the sporadic zebra pattern in the phenomenon of August 1, 2010 (and in many other phenomena), can be explained within the framework of a unified model of zebra patterns and radio fibers (fiber bursts) in the interaction of plasma waves with whistlers. The main changes in the zebra pattern stripes are caused by scattering of fast particles by whistlers leading to switching of the whistler instability from the normal Doppler effect to the anomalous one. In the end, possibilities of laboratory experiments are considered and the solar zebra pattern is compared with similar stripes in the decameter radio emission of Jupiter.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.