{"title":"Searching for dark torsion signatures at LIGO in Nieh–Yan teleparallel chiral gravitational waves and Chern–Simons invariants","authors":"L. C. Garcia de Andrade","doi":"10.1140/epjc/s10052-024-13481-3","DOIUrl":null,"url":null,"abstract":"<div><p>Romano has recently found that frequency modulation of gravitational waves (GWs) could be used as a dark matter probe. Many candidates for dark matter (DM) of various sources have been proposed in the literature. In this work, we use a teleparallel modified GW model to obtain DM dark torsion from LIGO data, where frequency modulation and frequency bands from various sources of GWs are investigated with regard to their suitability for DM dark torsion detection. In particular, nonhomogeneous and nonuniform chiral chemical potential generates GWs and dark torsion from primordial magnetic fields. It is shown that pulsar sources for GWs bathing the surface of the Earth on a contortion background of <span>\\(10^{-15}\\,\\textrm{s}^{-1}\\)</span> possess amplitudes well within the parameters of LIGO capabilities of amplitudes on the order of <span>\\(10^{-22}\\)</span>. GWs are also investigated in the context of having been produced by a primordial magnetic field and inhomogeneity on the chiral chemical potential. The torsion signatures at LIGO correspond to the amplitude dependence of massive torsion by GWs.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13481-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13481-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Romano has recently found that frequency modulation of gravitational waves (GWs) could be used as a dark matter probe. Many candidates for dark matter (DM) of various sources have been proposed in the literature. In this work, we use a teleparallel modified GW model to obtain DM dark torsion from LIGO data, where frequency modulation and frequency bands from various sources of GWs are investigated with regard to their suitability for DM dark torsion detection. In particular, nonhomogeneous and nonuniform chiral chemical potential generates GWs and dark torsion from primordial magnetic fields. It is shown that pulsar sources for GWs bathing the surface of the Earth on a contortion background of \(10^{-15}\,\textrm{s}^{-1}\) possess amplitudes well within the parameters of LIGO capabilities of amplitudes on the order of \(10^{-22}\). GWs are also investigated in the context of having been produced by a primordial magnetic field and inhomogeneity on the chiral chemical potential. The torsion signatures at LIGO correspond to the amplitude dependence of massive torsion by GWs.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.