{"title":"Thermodynamical topology with multiple defect curves for dyonic AdS black holes","authors":"Zi-Qing Chen, Shao-Wen Wei","doi":"10.1140/epjc/s10052-024-13620-w","DOIUrl":null,"url":null,"abstract":"<div><p>Dyonic black holes with quasitopological electromagnetism exhibit an intriguing phase diagram with two separated first-order coexistence curves. In this paper, we aim to uncover its influence on the black hole thermodynamical topology. At first, we investigate the phase transition and phase diagram of the dyonic black holes. Comparing with previous study that there is no black hole phase transition region for a middle pressure, we find this region can narrow or disappear by fine tuning the coupling parameter. Instead, two first-order phase transitions can be observed. Importantly, we uncover that such novel phase diagram shall lead to a multiple defect curve phenomenon in black hole topology where each dyonic black hole is treated as one defect in the thermodynamical parameter space. By examining the topology, it is shown that there could be one, three, or five black hole states for given pressure and temperature. For each case, the topological number is calculated. Our results show that the topological number always takes value of <span>\\(+1\\)</span>, keeping unchanged even when the multiple defect curves appear. Therefore, our study provides an important ingredient on understanding the black hole thermodynamical topology.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13620-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13620-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Dyonic black holes with quasitopological electromagnetism exhibit an intriguing phase diagram with two separated first-order coexistence curves. In this paper, we aim to uncover its influence on the black hole thermodynamical topology. At first, we investigate the phase transition and phase diagram of the dyonic black holes. Comparing with previous study that there is no black hole phase transition region for a middle pressure, we find this region can narrow or disappear by fine tuning the coupling parameter. Instead, two first-order phase transitions can be observed. Importantly, we uncover that such novel phase diagram shall lead to a multiple defect curve phenomenon in black hole topology where each dyonic black hole is treated as one defect in the thermodynamical parameter space. By examining the topology, it is shown that there could be one, three, or five black hole states for given pressure and temperature. For each case, the topological number is calculated. Our results show that the topological number always takes value of \(+1\), keeping unchanged even when the multiple defect curves appear. Therefore, our study provides an important ingredient on understanding the black hole thermodynamical topology.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.