{"title":"Assessment of atmospheric volatile organic compounds at two crude oil production plants in Southeastern Türkiye","authors":"Talha Kemal Koçak, Aysel Çağlan Günal","doi":"10.1007/s10661-024-13494-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ambient Volatile Organic Compounds (VOCs) were investigated to determine their characteristics, Ozone Formation Potentials (OFPs), and health risks in two crude oil production plants (Nusaybin and Egil plants) in southeastern Türkiye. Benzene, toluene, ethylbenzene, m + p xylene, o xylene, and 1,3,5-trimethylbenzene were measured at eight passive sampling points in each plant. Samples were analyzed using gas chromatography coupled with a flame ionization detector and a thermal desorption. The concentration of <span>\\({\\sum }_{6}\\text{VOC}\\)</span> ranged from 5.03 to 88.43 μg/m<sup>3</sup> in the Nusaybin Plant and from 7.70 to 154.35 μg/m<sup>3</sup> in the Egil Plant. Toluene and xylenes were predominant in both plants. In the Nusaybin Plant, VOCs were mainly associated with crude oil production, while in the Egil Plant, they were associated with a combination of crude oil production and mobile vehicle activities. The OFP of <span>\\({\\sum }_{6}\\text{VOC}\\)</span> was 297.47 μg/m<sup>3</sup> in the Nusaybin Plant, and 249.25 μg/m<sup>3</sup> in the Egil Plant. M + p xylene, toluene, and 1,3,5-trimethylbenzene together contributed 86% and 84% of the total OFP in the Nusaybin and Egil plants, respectively. Benzene exposure posed a possible cancer risk to oil workers in both plants. Non-cancer health risk was at a potential level in the Egil Plant but negligible in the Nusaybin Plant. This study is expected to enhance knowledge regarding the effects of crude oil production plants on air quality and workplace exposure.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13494-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient Volatile Organic Compounds (VOCs) were investigated to determine their characteristics, Ozone Formation Potentials (OFPs), and health risks in two crude oil production plants (Nusaybin and Egil plants) in southeastern Türkiye. Benzene, toluene, ethylbenzene, m + p xylene, o xylene, and 1,3,5-trimethylbenzene were measured at eight passive sampling points in each plant. Samples were analyzed using gas chromatography coupled with a flame ionization detector and a thermal desorption. The concentration of \({\sum }_{6}\text{VOC}\) ranged from 5.03 to 88.43 μg/m3 in the Nusaybin Plant and from 7.70 to 154.35 μg/m3 in the Egil Plant. Toluene and xylenes were predominant in both plants. In the Nusaybin Plant, VOCs were mainly associated with crude oil production, while in the Egil Plant, they were associated with a combination of crude oil production and mobile vehicle activities. The OFP of \({\sum }_{6}\text{VOC}\) was 297.47 μg/m3 in the Nusaybin Plant, and 249.25 μg/m3 in the Egil Plant. M + p xylene, toluene, and 1,3,5-trimethylbenzene together contributed 86% and 84% of the total OFP in the Nusaybin and Egil plants, respectively. Benzene exposure posed a possible cancer risk to oil workers in both plants. Non-cancer health risk was at a potential level in the Egil Plant but negligible in the Nusaybin Plant. This study is expected to enhance knowledge regarding the effects of crude oil production plants on air quality and workplace exposure.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.