Estimation of function's supports under arithmetic constraints

IF 0.6 3区 数学 Q3 MATHEMATICS
N. Hegyvári
{"title":"Estimation of function's supports under arithmetic constraints","authors":"N. Hegyvári","doi":"10.1007/s10476-024-00058-1","DOIUrl":null,"url":null,"abstract":"<div><p>The well-known inequality <span>\\(\\lvert {\\rm supp}(f) \\rvert \\lvert {\\rm supp}( \\widehat f) \\rvert \\geq |G|\\)</span> gives a lower estimation for each support. In this paper we consider the case where there exists a slowly increasing function <span>\\(F\\)</span> such that <span>\\(\\lvert {\\rm supp}(f) \\rvert \\leq F(\\lvert {\\rm supp}( \\widehat f) \\rvert )\\)</span>. We will show that this can be done under some arithmetic constraint.\nThe two links that help us come from additive combinatorics and theoretical computer science. The first is the additive energy which plays a central role in additive combinatorics. The second is the influence of Boolean functions. Our main tool is the spectral analysis of Boolean functions. We prove an uncertainty inequality in which the influence of a function and its Fourier spectrum play a role.\n</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1073 - 1079"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00058-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00058-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The well-known inequality \(\lvert {\rm supp}(f) \rvert \lvert {\rm supp}( \widehat f) \rvert \geq |G|\) gives a lower estimation for each support. In this paper we consider the case where there exists a slowly increasing function \(F\) such that \(\lvert {\rm supp}(f) \rvert \leq F(\lvert {\rm supp}( \widehat f) \rvert )\). We will show that this can be done under some arithmetic constraint. The two links that help us come from additive combinatorics and theoretical computer science. The first is the additive energy which plays a central role in additive combinatorics. The second is the influence of Boolean functions. Our main tool is the spectral analysis of Boolean functions. We prove an uncertainty inequality in which the influence of a function and its Fourier spectrum play a role.

算法约束下函数支持度的估计
众所周知的不等式\(\lvert {\rm supp}(f) \rvert \lvert {\rm supp}( \widehat f) \rvert \geq |G|\)给出了每个支持的较低估计。本文考虑存在一个慢增长函数\(F\),使得\(\lvert {\rm supp}(f) \rvert \leq F(\lvert {\rm supp}( \widehat f) \rvert )\)。我们将证明这可以在一些算术约束下完成。帮助我们的两个环节来自于加法组合学和理论计算机科学。首先是加性能量,它在加性组合学中起着核心作用。二是布尔函数的影响。我们的主要工具是布尔函数的谱分析。我们证明了一个不确定性不等式,其中函数及其傅立叶谱的影响起了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信