A note on the Huijsmans–de Pagter problem on finite dimensional ordered vector spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
C. Badea, J. Glück
{"title":"A note on the Huijsmans–de Pagter problem on finite dimensional ordered vector spaces","authors":"C. Badea,&nbsp;J. Glück","doi":"10.1007/s10476-024-00052-7","DOIUrl":null,"url":null,"abstract":"<div><p>A classical problem posed in 1992 by Huijsmans and de Pagter asks whether, for every positive operator <span>\\(T\\)</span> on a Banach lattice with spectrum <span>\\(\\sigma(T) = \\{1\\}\\)</span>, the inequality <span>\\(T \\ge \\operatorname{id}\\)</span> holds true. While the problem remains unsolved in its entirety, a positive solution is known in finite dimensions. In the broader context of ordered Banach spaces, Drnovšek provided an infinite-dimensional counterexample. In this note, we demonstrate the existence of finite-dimensional counterexamples, specifically on the ice cream cone and on a polyhedral cone in <span>\\(\\mathbb{R}^3\\)</span>. On the other hand, taking inspiration from the notion of <span>\\(m\\)</span>-isometries, we establish that each counterexample must contain a Jordan block of size at least <span>\\(3\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1009 - 1017"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00052-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical problem posed in 1992 by Huijsmans and de Pagter asks whether, for every positive operator \(T\) on a Banach lattice with spectrum \(\sigma(T) = \{1\}\), the inequality \(T \ge \operatorname{id}\) holds true. While the problem remains unsolved in its entirety, a positive solution is known in finite dimensions. In the broader context of ordered Banach spaces, Drnovšek provided an infinite-dimensional counterexample. In this note, we demonstrate the existence of finite-dimensional counterexamples, specifically on the ice cream cone and on a polyhedral cone in \(\mathbb{R}^3\). On the other hand, taking inspiration from the notion of \(m\)-isometries, we establish that each counterexample must contain a Jordan block of size at least \(3\).

有限维有序向量空间上的Huijsmans-de Pagter问题
1992年,Huijsmans和de Pagter提出了一个经典问题:对于谱\(\sigma(T) = \{1\}\)的Banach格上的每一个正算子\(T\),不等式\(T \ge \operatorname{id}\)是否成立。虽然这个问题在整体上仍未解决,但在有限维度上已知一个正解。在有序巴拿赫空间的更广泛的背景下,Drnovšek提供了一个无限维的反例。在本文中,我们证明了有限维反例的存在性,特别是在\(\mathbb{R}^3\)中的冰淇淋锥和多面体锥上。另一方面,从\(m\) -等距概念中获得灵感,我们确定每个反例必须包含大小至少为\(3\)的Jordan块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信