{"title":"Low-light image enhancement via an attention-guided deep Retinex decomposition model","authors":"Yu Luo, Guoliang Lv, Jie Ling, Xiaomin Hu","doi":"10.1007/s10489-024-06044-2","DOIUrl":null,"url":null,"abstract":"<div><p>Images acquired from optical imaging devices in a low-light or back-lit environment usually lead to a poor visual experience. The poor visibility and the attendant contrast or color distortion may degrade the performance of subsequent vision processing. To enhance the visibility of low-light image and mitigate the degradation of vision systems, an attention-guided deep Retinex decomposition model, dubbed Ag-Retinex-Net, is proposed. Inspired by the Retinex theory, the Ag-Retinex-Net first decomposes the input low-light image into two layers under an elaborate multi-term regularization, and then recomposes the refined two layers to obtain the final enhanced images via attention-guided generative adversarial learning. The multi-term constraints in the decomposition module can help better regularize and extract the decomposed illumination and reflectance. And the attention-guided generative adversarial learning in the recomposition module is utilized to help remove the degradation. The experimental results show that the proposed Ag-Retinex-Net outperforms other Retinex-based methods in terms of both visual quality and several objective evaluation metrics.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06044-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Images acquired from optical imaging devices in a low-light or back-lit environment usually lead to a poor visual experience. The poor visibility and the attendant contrast or color distortion may degrade the performance of subsequent vision processing. To enhance the visibility of low-light image and mitigate the degradation of vision systems, an attention-guided deep Retinex decomposition model, dubbed Ag-Retinex-Net, is proposed. Inspired by the Retinex theory, the Ag-Retinex-Net first decomposes the input low-light image into two layers under an elaborate multi-term regularization, and then recomposes the refined two layers to obtain the final enhanced images via attention-guided generative adversarial learning. The multi-term constraints in the decomposition module can help better regularize and extract the decomposed illumination and reflectance. And the attention-guided generative adversarial learning in the recomposition module is utilized to help remove the degradation. The experimental results show that the proposed Ag-Retinex-Net outperforms other Retinex-based methods in terms of both visual quality and several objective evaluation metrics.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.