Liang Xie;Zhou Su;Nan Chen;Yuntao Wang;Yiliang Liu;Ruidong Li
{"title":"A Privacy-Preserving Incentive Scheme for Data Sensing in App-Assisted Mobile Edge Crowdsensing","authors":"Liang Xie;Zhou Su;Nan Chen;Yuntao Wang;Yiliang Liu;Ruidong Li","doi":"10.1109/TNET.2024.3431629","DOIUrl":null,"url":null,"abstract":"Application (App)-assisted mobile edge crowd- sensing is a promising paradigm, in which Apps are in charge of tagging the location of the sensing tasks as point-of-interest (PoI) to assist the platform in recruiting users to participate in the sensing tasks. However, there exist potential security, incentive, and privacy threats for App-assisted mobile edge crowdsensing (AMECS) due to the presence of malicious Apps, the low-quality shared sensing data, and the vulnerability of wireless communication. Therefore, we propose a differential privacy-based incentive (DPI) scheme for AMECS to provide secure and efficient crowdsensing services while protecting users’ privacy. Specifically, we first propose an App quality management mechanism to correlate the behavior of each App with its quality and then select reliable Apps based on quality thresholds to assist the platform in recruiting users. With the designed mechanism, we further present an auction game-based incentive mechanism to encourage Apps to mark the location of the sensing tasks as PoI. To protect the privacy of users, a privacy-preserving sensing data sharing algorithm is devised based on differential privacy. Further, given the difficulty of obtaining accurate network parameters in practice, a reinforcement learning-based incentive mechanism is designed to encourage users to participate in sensing tasks. Finally, simulation results and security analysis demonstrate that the proposed scheme can effectively improve the utilities of users, ensure the security of the crowdsensing process, and protect the privacy of users.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4765-4780"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745923/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Application (App)-assisted mobile edge crowd- sensing is a promising paradigm, in which Apps are in charge of tagging the location of the sensing tasks as point-of-interest (PoI) to assist the platform in recruiting users to participate in the sensing tasks. However, there exist potential security, incentive, and privacy threats for App-assisted mobile edge crowdsensing (AMECS) due to the presence of malicious Apps, the low-quality shared sensing data, and the vulnerability of wireless communication. Therefore, we propose a differential privacy-based incentive (DPI) scheme for AMECS to provide secure and efficient crowdsensing services while protecting users’ privacy. Specifically, we first propose an App quality management mechanism to correlate the behavior of each App with its quality and then select reliable Apps based on quality thresholds to assist the platform in recruiting users. With the designed mechanism, we further present an auction game-based incentive mechanism to encourage Apps to mark the location of the sensing tasks as PoI. To protect the privacy of users, a privacy-preserving sensing data sharing algorithm is devised based on differential privacy. Further, given the difficulty of obtaining accurate network parameters in practice, a reinforcement learning-based incentive mechanism is designed to encourage users to participate in sensing tasks. Finally, simulation results and security analysis demonstrate that the proposed scheme can effectively improve the utilities of users, ensure the security of the crowdsensing process, and protect the privacy of users.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.