{"title":"Symbiotic Blockchain Consensus: Cognitive Backscatter Communications-Enabled Wireless Blockchain Consensus","authors":"Haoxiang Luo;Qianqian Zhang;Gang Sun;Hongfang Yu;Dusit Niyato","doi":"10.1109/TNET.2024.3462539","DOIUrl":null,"url":null,"abstract":"The wireless blockchain network (WBN) concept, born from the blockchain deployed in wireless networks, has appealed to many network scenarios. Blockchain consensus mechanisms (CMs) are key to enabling nodes in a wireless network to achieve consistency without any trusted entity. However, consensus reliability will be seriously affected by the instability of communication links in wireless networks. Meanwhile, it is difficult for nodes in wireless scenarios to obtain a timely energy supply. Energy-intensive blockchain functions can quickly drain the power of nodes, thus degrading consensus performance. Fortunately, a symbiotic radio (SR) system enabled by cognitive backscatter communications can solve the above problems. In SR, the secondary transmitter (STx) transmits messages over the radio frequency (RF) signal emitted from a primary transmitter (PTx) with extremely low energy consumption, and the STx can provide multipath gain to the PTx in return. Such an approach is useful for almost all vote-based CMs, such as the Practical Byzantine Fault-tolerant (PBFT)-like and the RAFT-like CMs. This paper proposes symbiotic blockchain consensus (SBC) by transforming 6 PBFT-like and 4 RAFT-like state-of-the-art (SOTA) CMs to demonstrate universality. These new CMs will benefit from mutualistic transmission relationships in SR, making full use of the limited spectrum resources in WBN. Simulation results show that SBC can increase the consensus success rate of PBFT-like and RAFT- like by 54.1% and 5.8%, respectively, and reduce energy consumption by 9.2% and 23.7%, respectively.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5372-5387"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697309/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The wireless blockchain network (WBN) concept, born from the blockchain deployed in wireless networks, has appealed to many network scenarios. Blockchain consensus mechanisms (CMs) are key to enabling nodes in a wireless network to achieve consistency without any trusted entity. However, consensus reliability will be seriously affected by the instability of communication links in wireless networks. Meanwhile, it is difficult for nodes in wireless scenarios to obtain a timely energy supply. Energy-intensive blockchain functions can quickly drain the power of nodes, thus degrading consensus performance. Fortunately, a symbiotic radio (SR) system enabled by cognitive backscatter communications can solve the above problems. In SR, the secondary transmitter (STx) transmits messages over the radio frequency (RF) signal emitted from a primary transmitter (PTx) with extremely low energy consumption, and the STx can provide multipath gain to the PTx in return. Such an approach is useful for almost all vote-based CMs, such as the Practical Byzantine Fault-tolerant (PBFT)-like and the RAFT-like CMs. This paper proposes symbiotic blockchain consensus (SBC) by transforming 6 PBFT-like and 4 RAFT-like state-of-the-art (SOTA) CMs to demonstrate universality. These new CMs will benefit from mutualistic transmission relationships in SR, making full use of the limited spectrum resources in WBN. Simulation results show that SBC can increase the consensus success rate of PBFT-like and RAFT- like by 54.1% and 5.8%, respectively, and reduce energy consumption by 9.2% and 23.7%, respectively.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.