{"title":"Distributed Stable Multi-Source Dynamic Broadcasting for Wireless Multi-Hop Networks Under SINR-Based Adversarial Channel Jamming","authors":"Xiang Tian;Baoxian Zhang;Cheng Li;Jiguo Yu","doi":"10.1109/TNET.2024.3470649","DOIUrl":null,"url":null,"abstract":"Disseminating continuous packet flows injected at multiple location-random source nodes to all network nodes, known as the multi-source dynamic global broadcast problem, is a fundamental building block for wireless multi-hop networks to run smoothly and efficiently. Previous studies on dynamic global broadcast all assume reliable communications. However, in realistic wireless networks, there exist unpredictable transmission failures caused by the randomized signal interference from uncorrelated wireless networks sharing the same spectrum or even malicious attackers. In this paper, by integrating the Signal-to-Interference-plus-Noise-Ratio (SINR) model, multi-channel communication mode, and randomized malicious channel jamming controlled by an adaptive adversary, we present an SINR-based adversarial channel jamming model to capture the unpredictable transmission failures in a wireless multi-hop network. We first propose a distributed Jamming-resilient Multi-source Static Broadcast (JMSB) algorithm based on random channel selection and message transmissions for multi-hop wireless networks under the above SINR-based adversarial channel jamming model. We then propose a distributed stable Jamming-resilient Multi-source Dynamic Broadcast (JMDB) algorithm which iterates JMSB repeatedly and efficiently in a two-stage manner. We derive the maximum supportable broadcast throughput of JMDB under the stability guarantee, i.e., the expected boundedness on the queue length of each network node and expected broadcast latency for each injected packet. Simulation results shows the stability and throughput efficiency of our proposed JMDB algorithm.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5356-5371"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706591/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Disseminating continuous packet flows injected at multiple location-random source nodes to all network nodes, known as the multi-source dynamic global broadcast problem, is a fundamental building block for wireless multi-hop networks to run smoothly and efficiently. Previous studies on dynamic global broadcast all assume reliable communications. However, in realistic wireless networks, there exist unpredictable transmission failures caused by the randomized signal interference from uncorrelated wireless networks sharing the same spectrum or even malicious attackers. In this paper, by integrating the Signal-to-Interference-plus-Noise-Ratio (SINR) model, multi-channel communication mode, and randomized malicious channel jamming controlled by an adaptive adversary, we present an SINR-based adversarial channel jamming model to capture the unpredictable transmission failures in a wireless multi-hop network. We first propose a distributed Jamming-resilient Multi-source Static Broadcast (JMSB) algorithm based on random channel selection and message transmissions for multi-hop wireless networks under the above SINR-based adversarial channel jamming model. We then propose a distributed stable Jamming-resilient Multi-source Dynamic Broadcast (JMDB) algorithm which iterates JMSB repeatedly and efficiently in a two-stage manner. We derive the maximum supportable broadcast throughput of JMDB under the stability guarantee, i.e., the expected boundedness on the queue length of each network node and expected broadcast latency for each injected packet. Simulation results shows the stability and throughput efficiency of our proposed JMDB algorithm.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.