Distributed Stable Multi-Source Dynamic Broadcasting for Wireless Multi-Hop Networks Under SINR-Based Adversarial Channel Jamming

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiang Tian;Baoxian Zhang;Cheng Li;Jiguo Yu
{"title":"Distributed Stable Multi-Source Dynamic Broadcasting for Wireless Multi-Hop Networks Under SINR-Based Adversarial Channel Jamming","authors":"Xiang Tian;Baoxian Zhang;Cheng Li;Jiguo Yu","doi":"10.1109/TNET.2024.3470649","DOIUrl":null,"url":null,"abstract":"Disseminating continuous packet flows injected at multiple location-random source nodes to all network nodes, known as the multi-source dynamic global broadcast problem, is a fundamental building block for wireless multi-hop networks to run smoothly and efficiently. Previous studies on dynamic global broadcast all assume reliable communications. However, in realistic wireless networks, there exist unpredictable transmission failures caused by the randomized signal interference from uncorrelated wireless networks sharing the same spectrum or even malicious attackers. In this paper, by integrating the Signal-to-Interference-plus-Noise-Ratio (SINR) model, multi-channel communication mode, and randomized malicious channel jamming controlled by an adaptive adversary, we present an SINR-based adversarial channel jamming model to capture the unpredictable transmission failures in a wireless multi-hop network. We first propose a distributed Jamming-resilient Multi-source Static Broadcast (JMSB) algorithm based on random channel selection and message transmissions for multi-hop wireless networks under the above SINR-based adversarial channel jamming model. We then propose a distributed stable Jamming-resilient Multi-source Dynamic Broadcast (JMDB) algorithm which iterates JMSB repeatedly and efficiently in a two-stage manner. We derive the maximum supportable broadcast throughput of JMDB under the stability guarantee, i.e., the expected boundedness on the queue length of each network node and expected broadcast latency for each injected packet. Simulation results shows the stability and throughput efficiency of our proposed JMDB algorithm.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5356-5371"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706591/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Disseminating continuous packet flows injected at multiple location-random source nodes to all network nodes, known as the multi-source dynamic global broadcast problem, is a fundamental building block for wireless multi-hop networks to run smoothly and efficiently. Previous studies on dynamic global broadcast all assume reliable communications. However, in realistic wireless networks, there exist unpredictable transmission failures caused by the randomized signal interference from uncorrelated wireless networks sharing the same spectrum or even malicious attackers. In this paper, by integrating the Signal-to-Interference-plus-Noise-Ratio (SINR) model, multi-channel communication mode, and randomized malicious channel jamming controlled by an adaptive adversary, we present an SINR-based adversarial channel jamming model to capture the unpredictable transmission failures in a wireless multi-hop network. We first propose a distributed Jamming-resilient Multi-source Static Broadcast (JMSB) algorithm based on random channel selection and message transmissions for multi-hop wireless networks under the above SINR-based adversarial channel jamming model. We then propose a distributed stable Jamming-resilient Multi-source Dynamic Broadcast (JMDB) algorithm which iterates JMSB repeatedly and efficiently in a two-stage manner. We derive the maximum supportable broadcast throughput of JMDB under the stability guarantee, i.e., the expected boundedness on the queue length of each network node and expected broadcast latency for each injected packet. Simulation results shows the stability and throughput efficiency of our proposed JMDB algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信