Derick Axel Lagunes-Ramírez;Gabriel González-Serna;Leonor Rivera-Rivera;Nimrod González-Franco;María Y. Hernández-Pérez;José A. Reyes-Ortiz
{"title":"Through the Youth Eyes: Training Depression Detection Algorithms with Eye Tracking Data","authors":"Derick Axel Lagunes-Ramírez;Gabriel González-Serna;Leonor Rivera-Rivera;Nimrod González-Franco;María Y. Hernández-Pérez;José A. Reyes-Ortiz","doi":"10.1109/TLA.2025.10810399","DOIUrl":null,"url":null,"abstract":"Depression is a prevalent mental health disorder, and early detection is crucial for effective intervention. Recent advancements in eye-tracking technology and machine learning offer new opportunities for non-invasive diagnosis. This study aims to assess the performance of different machine learning algorithms in. predicting depression in a young sample using eye-tracking metrics. Eye-tracking data from 139 participants were recorded with an emotional induction paradigm in which each participant observed a set of positive and negative emotional stimuli. The data were analyzed to find differences between groups, where the most significant features were selected to train prediction models. The dataset was then split into training and testing sets using stratified sampling. Four algorithms support vector machines (SVM), random forest (RF), a multi-layer perceptron (MLP) neural network, and gradient boosting (GB) were trained with hyperparameter optimization and 5-fold cross-validation. The RF algorithm achieved the highest accuracy at 84%, followed by SVM, GB, and the MLP neural network. Performance metrics such as accuracy, recall, F1-score, precision recall area under the curve (PR-AUC), and Matthews Correlation Coefficient (MCC) were also used to evaluate the models. The findings suggest that eye-tracking metrics combined with machine learning algorithms can effectively identify depressive symptoms in the young, indicating their potential as non-invasive diagnostic tools in clinical settings.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 1","pages":"6-16"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10810399","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10810399/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a prevalent mental health disorder, and early detection is crucial for effective intervention. Recent advancements in eye-tracking technology and machine learning offer new opportunities for non-invasive diagnosis. This study aims to assess the performance of different machine learning algorithms in. predicting depression in a young sample using eye-tracking metrics. Eye-tracking data from 139 participants were recorded with an emotional induction paradigm in which each participant observed a set of positive and negative emotional stimuli. The data were analyzed to find differences between groups, where the most significant features were selected to train prediction models. The dataset was then split into training and testing sets using stratified sampling. Four algorithms support vector machines (SVM), random forest (RF), a multi-layer perceptron (MLP) neural network, and gradient boosting (GB) were trained with hyperparameter optimization and 5-fold cross-validation. The RF algorithm achieved the highest accuracy at 84%, followed by SVM, GB, and the MLP neural network. Performance metrics such as accuracy, recall, F1-score, precision recall area under the curve (PR-AUC), and Matthews Correlation Coefficient (MCC) were also used to evaluate the models. The findings suggest that eye-tracking metrics combined with machine learning algorithms can effectively identify depressive symptoms in the young, indicating their potential as non-invasive diagnostic tools in clinical settings.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.