Fluid-Shuttle: Efficient Cloud Data Transmission Based on Serverless Computing Compression

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Rong Gu;Shulin Wang;Haipeng Dai;Xiaofei Chen;Zhaokang Wang;Wenjie Bao;Jiaqi Zheng;Yaofeng Tu;Yihua Huang;Lianyong Qi;Xiaolong Xu;Wanchun Dou;Guihai Chen
{"title":"Fluid-Shuttle: Efficient Cloud Data Transmission Based on Serverless Computing Compression","authors":"Rong Gu;Shulin Wang;Haipeng Dai;Xiaofei Chen;Zhaokang Wang;Wenjie Bao;Jiaqi Zheng;Yaofeng Tu;Yihua Huang;Lianyong Qi;Xiaolong Xu;Wanchun Dou;Guihai Chen","doi":"10.1109/TNET.2024.3402561","DOIUrl":null,"url":null,"abstract":"Nowadays, there exists a lot of cross-region data transmission demand on the cloud. It is promising to use serverless computing for data compressing to save the total data size. However, it is challenging to estimate the data transmission time and monetary cost with serverless compression. In addition, minimizing the data transmission cost is non-trivial due to the enormous parameter space. This paper focuses on this problem and makes the following contributions: 1) We propose empirical data transmission time and monetary cost models based on serverless compression. It can also predict compression information, e.g., ratio and speed using chunk sampling and machine learning techniques. 2) For single-task cloud data transmission, we propose two efficient parameter search methods based on Sequential Quadratic Programming (SQP) and Eliminate then Divide and Conquer (EDC) with proven error upper bounds. Besides, we propose a parameter fine-tuning strategy to deal with transmission bandwidth variance. 3) Furthermore, for multi-task scenarios, a parameter search method based on dynamic programming and numerical computation is proposed. We have implemented the system called Fluid-Shuttle, which includes straggler optimization, cache optimization, and the autoscaling decompression mechanism. Finally, we evaluate the performance of Fluid-Shuttle with various workloads and applications on the real-world AWS serverless computing platform. Experimental results show that the proposed approach can improve the parameter search efficiency by over \n<inline-formula> <tex-math>$3\\times $ </tex-math></inline-formula>\n compared with the state-of-art methods and achieves better parameter quality. In addition, our approach achieves higher time efficiency and lower monetary cost compared with competing cloud data transmission approaches.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4554-4569"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713271/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, there exists a lot of cross-region data transmission demand on the cloud. It is promising to use serverless computing for data compressing to save the total data size. However, it is challenging to estimate the data transmission time and monetary cost with serverless compression. In addition, minimizing the data transmission cost is non-trivial due to the enormous parameter space. This paper focuses on this problem and makes the following contributions: 1) We propose empirical data transmission time and monetary cost models based on serverless compression. It can also predict compression information, e.g., ratio and speed using chunk sampling and machine learning techniques. 2) For single-task cloud data transmission, we propose two efficient parameter search methods based on Sequential Quadratic Programming (SQP) and Eliminate then Divide and Conquer (EDC) with proven error upper bounds. Besides, we propose a parameter fine-tuning strategy to deal with transmission bandwidth variance. 3) Furthermore, for multi-task scenarios, a parameter search method based on dynamic programming and numerical computation is proposed. We have implemented the system called Fluid-Shuttle, which includes straggler optimization, cache optimization, and the autoscaling decompression mechanism. Finally, we evaluate the performance of Fluid-Shuttle with various workloads and applications on the real-world AWS serverless computing platform. Experimental results show that the proposed approach can improve the parameter search efficiency by over $3\times $ compared with the state-of-art methods and achieves better parameter quality. In addition, our approach achieves higher time efficiency and lower monetary cost compared with competing cloud data transmission approaches.
流体穿梭:基于无服务器计算压缩的高效云数据传输
如今,在云上存在着大量的跨区域数据传输需求。使用无服务器计算进行数据压缩以节省总数据大小是有希望的。然而,估计无服务器压缩的数据传输时间和金钱成本是具有挑战性的。此外,由于参数空间巨大,使数据传输成本最小化是非常重要的。本文重点研究了这一问题,并做出了以下贡献:1)提出了基于无服务器压缩的经验数据传输时间和货币成本模型。它还可以预测压缩信息,例如,使用块采样和机器学习技术的比率和速度。2)针对单任务云数据传输,提出了基于顺序二次规划(SQP)和消除然后分治(EDC)的两种高效参数搜索方法,并证明了误差上界。此外,我们还提出了一种参数微调策略来处理传输带宽的变化。3)针对多任务场景,提出了一种基于动态规划和数值计算的参数搜索方法。我们实现了一个名为Fluid-Shuttle的系统,该系统包括离散优化、缓存优化和自动缩放解压机制。最后,我们在真实的AWS无服务器计算平台上评估了Fluid-Shuttle在各种工作负载和应用程序下的性能。实验结果表明,该方法与现有方法相比,参数搜索效率提高了3倍以上,参数质量得到了提高。此外,与竞争对手的云数据传输方法相比,我们的方法具有更高的时间效率和更低的货币成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信