Guanglei Song;Lin He;Tao Chen;Jinlei Lin;Linna Fan;Kun Wen;Zhiliang Wang;Jiahai Yang
{"title":"PMap: Reinforcement Learning-Based Internet-Wide Port Scanning","authors":"Guanglei Song;Lin He;Tao Chen;Jinlei Lin;Linna Fan;Kun Wen;Zhiliang Wang;Jiahai Yang","doi":"10.1109/TNET.2024.3491314","DOIUrl":null,"url":null,"abstract":"Internet-wide scanning is a commonly used research technique in various network surveys, such as measuring service deployment and security vulnerabilities. However, these network surveys are limited to the given port set, not comprehensively obtaining the real network landscape, and even misleading survey conclusions. In this work, we introduce PMap, a port scanning tool that efficiently discovers the most open ports from all 65K ports in the whole network. PMap uses the correlation of ports to build an open port correlation graph of each network, using a reinforcement learning framework to update the correlation graph based on feedback results and dynamically adjust the order of port scanning. Compared to current port scanning methods, PMap performs better on hit rate, coverage, and intrusiveness. Our experiments over real networks show that PMap can find 90% open ports by only scanning 125 ports (90%@125) to each address, which is 99.3% less than the state-of-the-art port scanning methods. It reduces the number of scanned ports to decrease the intrusive nature of port scanning. In addition, PMap is highly parallel and lightweight. It scans 500 networks in parallel, achieving a port recommendation rate of up to 18 million per second, consuming only 7GB of memory. PMap is the first effective practice for scanning open ports using reinforcement learning. It bridges the gap of existing scanning tools and effectively supports subsequent service discovery and security research.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5524-5538"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758701/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Internet-wide scanning is a commonly used research technique in various network surveys, such as measuring service deployment and security vulnerabilities. However, these network surveys are limited to the given port set, not comprehensively obtaining the real network landscape, and even misleading survey conclusions. In this work, we introduce PMap, a port scanning tool that efficiently discovers the most open ports from all 65K ports in the whole network. PMap uses the correlation of ports to build an open port correlation graph of each network, using a reinforcement learning framework to update the correlation graph based on feedback results and dynamically adjust the order of port scanning. Compared to current port scanning methods, PMap performs better on hit rate, coverage, and intrusiveness. Our experiments over real networks show that PMap can find 90% open ports by only scanning 125 ports (90%@125) to each address, which is 99.3% less than the state-of-the-art port scanning methods. It reduces the number of scanned ports to decrease the intrusive nature of port scanning. In addition, PMap is highly parallel and lightweight. It scans 500 networks in parallel, achieving a port recommendation rate of up to 18 million per second, consuming only 7GB of memory. PMap is the first effective practice for scanning open ports using reinforcement learning. It bridges the gap of existing scanning tools and effectively supports subsequent service discovery and security research.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.