{"title":"VERCEL: Verification and Rectification of Configuration Errors With Least Squares","authors":"Abhiram Singh;Sidharth Sharma;Ashwin Gumaste","doi":"10.1109/TNET.2024.3422035","DOIUrl":null,"url":null,"abstract":"We present Vercel, a network verification and automatic fault rectification tool that is based on a computationally tractable, algorithmically expressive, and mathematically aesthetic domain of linear algebra. Vercel works on abstracting out packet headers into standard basis vectors that are used to create a port-specific forwarding matrix \n<inline-formula> <tex-math>$\\mathcal {A}$ </tex-math></inline-formula>\n, representing a set of packet headers/prefixes that a router forwards along a port. By equating this matrix \n<inline-formula> <tex-math>$\\mathcal {A}$ </tex-math></inline-formula>\n and a vector b (that represents the set of all headers under consideration), we are able to apply least squares (which produces a column rank agnostic solution) to compute which headers are reachable at the destination. Reachability now simply means evaluating if vector b is in the column space of \n<inline-formula> <tex-math>$\\mathcal {A}$ </tex-math></inline-formula>\n, which can efficiently be computed using least squares. Further, the use of vector representation and least squares opens new possibilities for understanding network behavior. For example, we are able to map rules, routing policies, what-if scenarios to the fundamental linear algebraic form, \n<inline-formula> <tex-math>$\\mathcal {A}x=b$ </tex-math></inline-formula>\n, as well as determine how to configure forwarding tables appropriately. We show Vercel is faster than the state-of-art such as NetPlumber, Veriflow, APKeep, AP Verifier, when measured over diverse datasets. Vercel is almost as fast as Deltanet, when rules are verified in batches and provides better scalability, expressiveness and memory efficiency. A key highlight of Vercel is that while evaluating for reachability, the tool can incorporate intents, and transform these into auto-configurable table entries, implying a recommendation/correction system.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4600-4614"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10731630/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We present Vercel, a network verification and automatic fault rectification tool that is based on a computationally tractable, algorithmically expressive, and mathematically aesthetic domain of linear algebra. Vercel works on abstracting out packet headers into standard basis vectors that are used to create a port-specific forwarding matrix
$\mathcal {A}$
, representing a set of packet headers/prefixes that a router forwards along a port. By equating this matrix
$\mathcal {A}$
and a vector b (that represents the set of all headers under consideration), we are able to apply least squares (which produces a column rank agnostic solution) to compute which headers are reachable at the destination. Reachability now simply means evaluating if vector b is in the column space of
$\mathcal {A}$
, which can efficiently be computed using least squares. Further, the use of vector representation and least squares opens new possibilities for understanding network behavior. For example, we are able to map rules, routing policies, what-if scenarios to the fundamental linear algebraic form,
$\mathcal {A}x=b$
, as well as determine how to configure forwarding tables appropriately. We show Vercel is faster than the state-of-art such as NetPlumber, Veriflow, APKeep, AP Verifier, when measured over diverse datasets. Vercel is almost as fast as Deltanet, when rules are verified in batches and provides better scalability, expressiveness and memory efficiency. A key highlight of Vercel is that while evaluating for reachability, the tool can incorporate intents, and transform these into auto-configurable table entries, implying a recommendation/correction system.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.