DTESR: Remote Sensing Imagery Super-Resolution With Dynamic Reference Textures Exploitation

Jingliang Guo;Mengke Yuan;Tong Wang;Zhifeng Li;Xiaohong Jia;Dong-Ming Yan
{"title":"DTESR: Remote Sensing Imagery Super-Resolution With Dynamic Reference Textures Exploitation","authors":"Jingliang Guo;Mengke Yuan;Tong Wang;Zhifeng Li;Xiaohong Jia;Dong-Ming Yan","doi":"10.1109/LGRS.2024.3515136","DOIUrl":null,"url":null,"abstract":"Reference-based remote sensing super-resolution (RefRS-SR) method shows great potential for improving both spatial resolution and coverage area of remote sensing images, by which high-resolution (HR) reference images can supplement fine details for low-resolution (LR) but wide coverage images. However, most RefRS-SR methods treat the reference as a static template and unidirectionally transfer the high-frequency information to the LR input. To address the issue of inefficient and inaccurate guided super-resolving, we propose a new RefRS-SR method with dynamic reference textures exploitation dubbed DTESR. The key referenced restoration (Ref Restoration) module consists of three components: correlation generation, texture enhancement and refinement (TER), and adaptive similarity-based fusion to progressively reconstruct high correlation and delicate textures for the LR input. Specifically, both the LR input and reference features are utilized for precise correlation generation. Next, both features are enhanced and refined with the most suitable reference under the guidance of the correlation map. Moreover, a learnable fusion method is designed to maintain the consistency of adjacent pixels. These operations will be iteratively applied to the three reconstruction scales to promote the exploitation of the Ref features. Through comprehensive quantitative and qualitative evaluations, our experimental results demonstrate that DTESR surpasses the current state-of-the-art RefRS-SR methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10793428/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reference-based remote sensing super-resolution (RefRS-SR) method shows great potential for improving both spatial resolution and coverage area of remote sensing images, by which high-resolution (HR) reference images can supplement fine details for low-resolution (LR) but wide coverage images. However, most RefRS-SR methods treat the reference as a static template and unidirectionally transfer the high-frequency information to the LR input. To address the issue of inefficient and inaccurate guided super-resolving, we propose a new RefRS-SR method with dynamic reference textures exploitation dubbed DTESR. The key referenced restoration (Ref Restoration) module consists of three components: correlation generation, texture enhancement and refinement (TER), and adaptive similarity-based fusion to progressively reconstruct high correlation and delicate textures for the LR input. Specifically, both the LR input and reference features are utilized for precise correlation generation. Next, both features are enhanced and refined with the most suitable reference under the guidance of the correlation map. Moreover, a learnable fusion method is designed to maintain the consistency of adjacent pixels. These operations will be iteratively applied to the three reconstruction scales to promote the exploitation of the Ref features. Through comprehensive quantitative and qualitative evaluations, our experimental results demonstrate that DTESR surpasses the current state-of-the-art RefRS-SR methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信