Construction of Chitinase Complexes Using Self-Assembly Systems for Efficient Hydrolysis of Chitin

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhewei Shen, Yuchen Pan, Yuansheng Liu, Houhui Song* and Chenggang Xu*, 
{"title":"Construction of Chitinase Complexes Using Self-Assembly Systems for Efficient Hydrolysis of Chitin","authors":"Zhewei Shen,&nbsp;Yuchen Pan,&nbsp;Yuansheng Liu,&nbsp;Houhui Song* and Chenggang Xu*,&nbsp;","doi":"10.1021/acssynbio.4c0061310.1021/acssynbio.4c00613","DOIUrl":null,"url":null,"abstract":"<p >Chitin biomass is the second most abundant natural polysaccharide after cellulose on the earth, yet its recalcitrance to degrade and utilize severely limits its application. However, many microorganisms, such as <i>Serratia marcescen</i>, can secrete a range of free chitinases to degrade chitin, though their activity is typically insufficient to meet industrial demands. In this study, we employed self-assembly systems, named SpyTag/SpyCatcher and SnoopTag/SnoopCatcher, to modularize the molecular design of CHB, ChiB, ChiC, and CBP21 derived from <i>S. marcescens</i> ATCC14756, and we successfully constructed a variety of chitinase complexes. The assembled complexes showed higher chitinolytic activity and stability, compared to free chitinase mixture. Moreover, the distinct arrangements and combinations of chitinases within these complexes led to varied activities, suggesting that the spatial proximity and substrate channeling effects contribute to the synergy of chitinase complexes. The findings lay a solid technical foundation for the application of chitinosome in the industrial production of <i>N</i>-acetylglucosamine and chitooligosaccharides.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 12","pages":"4143–4153 4143–4153"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00613","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Chitin biomass is the second most abundant natural polysaccharide after cellulose on the earth, yet its recalcitrance to degrade and utilize severely limits its application. However, many microorganisms, such as Serratia marcescen, can secrete a range of free chitinases to degrade chitin, though their activity is typically insufficient to meet industrial demands. In this study, we employed self-assembly systems, named SpyTag/SpyCatcher and SnoopTag/SnoopCatcher, to modularize the molecular design of CHB, ChiB, ChiC, and CBP21 derived from S. marcescens ATCC14756, and we successfully constructed a variety of chitinase complexes. The assembled complexes showed higher chitinolytic activity and stability, compared to free chitinase mixture. Moreover, the distinct arrangements and combinations of chitinases within these complexes led to varied activities, suggesting that the spatial proximity and substrate channeling effects contribute to the synergy of chitinase complexes. The findings lay a solid technical foundation for the application of chitinosome in the industrial production of N-acetylglucosamine and chitooligosaccharides.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信