Improved treatment of bosonic dark matter dynamics in neutron stars: consequences and constraints

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Koushik Dutta, Deep Ghosh and Biswarup Mukhopadhyaya
{"title":"Improved treatment of bosonic dark matter dynamics in neutron stars: consequences and constraints","authors":"Koushik Dutta, Deep Ghosh and Biswarup Mukhopadhyaya","doi":"10.1088/1475-7516/2024/12/053","DOIUrl":null,"url":null,"abstract":"It is conceivable that a bosonic dark matter (DM) with non-gravitational interactions with SM particles will be accumulated at the center of a neutron star (NS) and can lead to black hole formation. In contrast to previous works with a fixed NS temperature, we dynamically determine the formation of Bose-Einstein condensate (BEC) for a given set of DM parameters, namely the DM-neutron scattering cross-section (σχn), the thermal average of DM annihilation cross-section (⟨σv⟩) and the DM mass (mχ). For both non-annihilating and annihilating DM with ⟨σv⟩ ≲ 10-26 cm3 s-1, the BEC forms for mχ ≲ 10 TeV. In case of non-annihilating DM, observations of old NS allows σχn ≲ 10-52 cm2 for 10 MeV ≤ mχ ≲ 10 GeV (with BEC) and σχn ≲ 10-47 cm2 for 5 TeV ≲ mχ ≲ 30 PeV (without BEC). This analysis shows that the electroweak mass window, 10 GeV ≲ mχ ≲ 5 TeV is essentially unconstrained by NS observations and therefore is subject only to direct detection experiments. In the annihilating DM scenario, the exclusion limits on DM parameters become weaker and even vanish for typical WIMP annihilation cross-section. However, the late-time heating of the NS enables us to probe the region with σχn ≳ 10-47 cm2, using the James Webb Space Telescope in the foreseeable future. When our results are viewed in the context of indirect searches of DM, it provides a lower limit on the ⟨σv⟩, which is sensitive to the DM thermal state.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"100 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/053","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is conceivable that a bosonic dark matter (DM) with non-gravitational interactions with SM particles will be accumulated at the center of a neutron star (NS) and can lead to black hole formation. In contrast to previous works with a fixed NS temperature, we dynamically determine the formation of Bose-Einstein condensate (BEC) for a given set of DM parameters, namely the DM-neutron scattering cross-section (σχn), the thermal average of DM annihilation cross-section (⟨σv⟩) and the DM mass (mχ). For both non-annihilating and annihilating DM with ⟨σv⟩ ≲ 10-26 cm3 s-1, the BEC forms for mχ ≲ 10 TeV. In case of non-annihilating DM, observations of old NS allows σχn ≲ 10-52 cm2 for 10 MeV ≤ mχ ≲ 10 GeV (with BEC) and σχn ≲ 10-47 cm2 for 5 TeV ≲ mχ ≲ 30 PeV (without BEC). This analysis shows that the electroweak mass window, 10 GeV ≲ mχ ≲ 5 TeV is essentially unconstrained by NS observations and therefore is subject only to direct detection experiments. In the annihilating DM scenario, the exclusion limits on DM parameters become weaker and even vanish for typical WIMP annihilation cross-section. However, the late-time heating of the NS enables us to probe the region with σχn ≳ 10-47 cm2, using the James Webb Space Telescope in the foreseeable future. When our results are viewed in the context of indirect searches of DM, it provides a lower limit on the ⟨σv⟩, which is sensitive to the DM thermal state.
中子星玻色暗物质动力学的改进处理:后果与约束
可以想象,与 SM 粒子发生非引力相互作用的玻色暗物质(DM)会在中子星(NS)中心积累,并导致黑洞的形成。与以往固定中子星温度的研究不同,我们动态地确定了一组给定暗物质参数(即暗物质-中子散射截面(σχn)、暗物质湮灭截面的热平均值(⟨σv⟩)和暗物质质量(mχ))下玻色-爱因斯坦凝聚体(BEC)的形成。对于⟨σv⟩ ≲ 10-26 cm3 s-1的非湮灭和湮灭DM,在mχ ≲ 10 TeV时都会形成BEC。在非湮灭DM的情况下,对老NS的观测允许10 MeV ≤ mχ ≲ 10 GeV时的σχn ≲ 10-52 cm2(有BEC)和5 TeV ≲ mχ ≲ 30 PeV时的σχn ≲ 10-47 cm2(无BEC)。这一分析表明,电弱质量窗口(10 GeV ≲ mχ ≲ 5 TeV)基本上不受NS观测的限制,因此只能进行直接探测实验。在湮灭的DM情景中,DM参数的排除限制变得更弱,甚至消失了典型的WIMP湮灭截面。然而,NS的晚期加热使我们能够在可预见的未来利用詹姆斯-韦伯太空望远镜探测σχn ≳ 10-47平方厘米的区域。从间接搜索DM的角度来看我们的结果,它提供了一个对DM热态敏感的⟨σv⟩的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信