W. X. Zhao, M. Yang, X. Du, Y. D. Li, K. Y. Zhai, Y. Q. Hu, J. F. Han, Y. Huang, Z. K. Liu, Y. G. Yao, J. C. Zhuang, Y. Du, J. J. Zhou, Y. L. Chen, L. X. Yang
{"title":"Topological phase transition in quasi-one-dimensional bismuth iodide Bi4I4","authors":"W. X. Zhao, M. Yang, X. Du, Y. D. Li, K. Y. Zhai, Y. Q. Hu, J. F. Han, Y. Huang, Z. K. Liu, Y. G. Yao, J. C. Zhuang, Y. Du, J. J. Zhou, Y. L. Chen, L. X. Yang","doi":"10.1038/s41535-024-00711-w","DOIUrl":null,"url":null,"abstract":"<p>Quasi-one-dimensional (quasi-1D) bismuth iodide Bi<sub>4</sub>I<sub>4</sub> exhibits versatile topological phases of matter including weak topological insulator (WTI) and higher-order topological insulator (HOTI) phases with high tunability in response to external parameters. In this work, performing laser-based angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we reveal the presence of an energy gap on the (100) surface of the low-temperature α-Bi<sub>4</sub>I<sub>4</sub>, providing spectroscopic evidence for the HOTI phase. Conversely, the high-temperature β-Bi<sub>4</sub>I<sub>4</sub> harbors gapless Dirac fermions on the (100) surface alongside gapped states on the (001) surface, thereby establishing a WTI phase. By tracking the temperature evolution of the (100) surface states, we unveil a thermal hysteresis of the surface gap in line with the α-β structural phase transition. Our findings directly evidence a temperature-induced topological phase transition from WTI to HOTI in Bi<sub>4</sub>I<sub>4</sub>, which paves the way to its potential applications at room temperature.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00711-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-one-dimensional (quasi-1D) bismuth iodide Bi4I4 exhibits versatile topological phases of matter including weak topological insulator (WTI) and higher-order topological insulator (HOTI) phases with high tunability in response to external parameters. In this work, performing laser-based angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we reveal the presence of an energy gap on the (100) surface of the low-temperature α-Bi4I4, providing spectroscopic evidence for the HOTI phase. Conversely, the high-temperature β-Bi4I4 harbors gapless Dirac fermions on the (100) surface alongside gapped states on the (001) surface, thereby establishing a WTI phase. By tracking the temperature evolution of the (100) surface states, we unveil a thermal hysteresis of the surface gap in line with the α-β structural phase transition. Our findings directly evidence a temperature-induced topological phase transition from WTI to HOTI in Bi4I4, which paves the way to its potential applications at room temperature.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.