Controllable Active Intermediate in CO2 Hydrogenation Enabling Highly Selective N,N-Dimethylformamide Synthesis via N-Formylation

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jieyun Zhang, Guanna Li, Jin Xie, Yang Hai, Weiming Wan, Haotian Sun, Bin Wang, Xiaojing Wu, Jiannian Cheng, Changxin He, Wei Hu, Ying Zhang, Zelong Li, Can Li
{"title":"Controllable Active Intermediate in CO2 Hydrogenation Enabling Highly Selective N,N-Dimethylformamide Synthesis via N-Formylation","authors":"Jieyun Zhang, Guanna Li, Jin Xie, Yang Hai, Weiming Wan, Haotian Sun, Bin Wang, Xiaojing Wu, Jiannian Cheng, Changxin He, Wei Hu, Ying Zhang, Zelong Li, Can Li","doi":"10.1021/jacs.4c12503","DOIUrl":null,"url":null,"abstract":"<i>N</i>,<i>N</i>-Dimethylformamide (DMF) is a widely used solvent, and its green and low-carbon synthesis methods are in high demand. Herein, we report a new approach for DMF synthesis using a continuous flow reaction system with a fixed-bed reactor and a ZnO-TiO<sub>2</sub> solid solution catalyst. This catalyst effectively utilizes CO<sub>2</sub>, H<sub>2</sub>, and dimethylamine (DMA) as feedstocks, demonstrating performance with 99% DMF selectivity and single-pass DMA conversion approaching thermodynamic equilibrium. Moreover, the catalyst demonstrates good stability, with no signs of deactivation over 1000 h of continuous operation. The key to superior activity lies in the synergetic effect of the Zn and Ti sites, which facilitates the formation of active formate species. These species act as crucial intermediates, reacting with DMA to produce DMF. Importantly, the slow hydrogenation kinetics of the formate species prevent the formation of CH<sub>2</sub>O* species, thereby suppressing the formation of the undesired byproduct, trimethylamine. This work underscores the potential of kinetically controlling active intermediates in CO<sub>2</sub> hydrogenation to prepare high-value-added chemicals by coupling them to platform molecules. It presents a promising strategy for the efficient utilization of CO<sub>2</sub> resources and offers a valuable solution for large-scale DMF synthesis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"334 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

N,N-Dimethylformamide (DMF) is a widely used solvent, and its green and low-carbon synthesis methods are in high demand. Herein, we report a new approach for DMF synthesis using a continuous flow reaction system with a fixed-bed reactor and a ZnO-TiO2 solid solution catalyst. This catalyst effectively utilizes CO2, H2, and dimethylamine (DMA) as feedstocks, demonstrating performance with 99% DMF selectivity and single-pass DMA conversion approaching thermodynamic equilibrium. Moreover, the catalyst demonstrates good stability, with no signs of deactivation over 1000 h of continuous operation. The key to superior activity lies in the synergetic effect of the Zn and Ti sites, which facilitates the formation of active formate species. These species act as crucial intermediates, reacting with DMA to produce DMF. Importantly, the slow hydrogenation kinetics of the formate species prevent the formation of CH2O* species, thereby suppressing the formation of the undesired byproduct, trimethylamine. This work underscores the potential of kinetically controlling active intermediates in CO2 hydrogenation to prepare high-value-added chemicals by coupling them to platform molecules. It presents a promising strategy for the efficient utilization of CO2 resources and offers a valuable solution for large-scale DMF synthesis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信