Ultrahigh Energy Storage Density in a Lead-Free Bi0.5Na0.5TiO3-Based Relaxor Ferroelectric Ceramics under Moderate Electric Fields by Manipulating Phase Fraction

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jiangtao fan, Lingxiang Wang, Jiaxin Wang, Zheng Chen, Langxiang Zhong, Tiantian Yang, Zhanggui Hu
{"title":"Ultrahigh Energy Storage Density in a Lead-Free Bi0.5Na0.5TiO3-Based Relaxor Ferroelectric Ceramics under Moderate Electric Fields by Manipulating Phase Fraction","authors":"Jiangtao fan, Lingxiang Wang, Jiaxin Wang, Zheng Chen, Langxiang Zhong, Tiantian Yang, Zhanggui Hu","doi":"10.1039/d4qi02642j","DOIUrl":null,"url":null,"abstract":"Since electronic devices deteriorate when used in extremely high electric fields, it is essential to explore the potential for dielectric capacitors with high energy density in medium electric fields (MEFs). In this account, a polymorphic multiscale domains construction strategy is suggested to optimize the energy storage performance (ESPs) of (1-x)Bi0.5Na0.5TiO3-xCa(Ta0.5Al0.5)O3(xCTA, x=0, 0.05, 0.1, 0.15, 0.2) under MEFs. The symbiosis of rhombic (R) + tetragonal (T) phase polar nanoregions (PNRs) is achieved through the design of Ca2+ and (Ta5+ + Al3+)4+ doping to phase ratios. This yielded in a significant recoverable energy density (Wrec) of 5.89 J cm-3 and an efficiency () of 87.4% at 370 kV cm-1 for 0.15CTA ceramic. In addition, the 0.15CTA ceramic exhibits excellent ESP stability (30 ~ 200°C and 1-200 Hz), and also achieves ultra-high power density (154 MW cm-3) and fast discharge time (54.07 ns). This work gives a promising method to boost the ESP of ceramic capacitors at MEFs.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"16 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02642j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Since electronic devices deteriorate when used in extremely high electric fields, it is essential to explore the potential for dielectric capacitors with high energy density in medium electric fields (MEFs). In this account, a polymorphic multiscale domains construction strategy is suggested to optimize the energy storage performance (ESPs) of (1-x)Bi0.5Na0.5TiO3-xCa(Ta0.5Al0.5)O3(xCTA, x=0, 0.05, 0.1, 0.15, 0.2) under MEFs. The symbiosis of rhombic (R) + tetragonal (T) phase polar nanoregions (PNRs) is achieved through the design of Ca2+ and (Ta5+ + Al3+)4+ doping to phase ratios. This yielded in a significant recoverable energy density (Wrec) of 5.89 J cm-3 and an efficiency () of 87.4% at 370 kV cm-1 for 0.15CTA ceramic. In addition, the 0.15CTA ceramic exhibits excellent ESP stability (30 ~ 200°C and 1-200 Hz), and also achieves ultra-high power density (154 MW cm-3) and fast discharge time (54.07 ns). This work gives a promising method to boost the ESP of ceramic capacitors at MEFs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信