{"title":"Mercury evidence for volcanism driving environmental changes during the protracted Late Ordovician mass extinction and early Silurian recovery","authors":"Yanfang Li, Hui Tian, Tongwei Zhang, Baojian Shen, Deyong Shao","doi":"10.1016/j.chemgeo.2024.122566","DOIUrl":null,"url":null,"abstract":"Volcanism has been proposed as the trigger for the environmental perturbations and associated mass extinction during the Ordovician–Silurian (O<ce:glyph name=\"sbnd\"></ce:glyph>S) transition. However, the timing, duration, and intensity of volcanic eruptions during this critical period and their relationships to environmental perturbations and biotic changes remain unresolved. In this study, we use mercury (Hg) concentrations and isotopes from marine sediments in South China to reconstruct the evolution of volcanism from the Late Ordovician to early Silurian. Our results show that strong Hg enrichment coupled with generally near-zero to slightly positive Δ<ce:sup loc=\"post\">199</ce:sup>Hg values occurred before, during, and after the classically defined Late Ordovician Mass Extinction (LOME), suggesting a significant influx of volcanogenic Hg. The Hg enrichment intervals coincided with global warming, oceanic anoxia, and negative excursions in carbon and sulfur isotopes, suggesting that volcanism drove the environmental perturbations during the O<ce:glyph name=\"sbnd\"></ce:glyph>S transition. The coincidence of Hg enrichment with extinction horizons supports the hypothesis that volcanism may have contributed to LOME. Our study also suggests that volcanism persisted for approximately 3 million years after mass extinction and may have delayed the recovery of marine ecosystems during early Silurian.","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.chemgeo.2024.122566","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Volcanism has been proposed as the trigger for the environmental perturbations and associated mass extinction during the Ordovician–Silurian (OS) transition. However, the timing, duration, and intensity of volcanic eruptions during this critical period and their relationships to environmental perturbations and biotic changes remain unresolved. In this study, we use mercury (Hg) concentrations and isotopes from marine sediments in South China to reconstruct the evolution of volcanism from the Late Ordovician to early Silurian. Our results show that strong Hg enrichment coupled with generally near-zero to slightly positive Δ199Hg values occurred before, during, and after the classically defined Late Ordovician Mass Extinction (LOME), suggesting a significant influx of volcanogenic Hg. The Hg enrichment intervals coincided with global warming, oceanic anoxia, and negative excursions in carbon and sulfur isotopes, suggesting that volcanism drove the environmental perturbations during the OS transition. The coincidence of Hg enrichment with extinction horizons supports the hypothesis that volcanism may have contributed to LOME. Our study also suggests that volcanism persisted for approximately 3 million years after mass extinction and may have delayed the recovery of marine ecosystems during early Silurian.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.