Elucidating the role of combined latent hardening due to slip-slip and slip-twin interaction for modeling the evolution of crystallographic texture in high nitrogen steels
{"title":"Elucidating the role of combined latent hardening due to slip-slip and slip-twin interaction for modeling the evolution of crystallographic texture in high nitrogen steels","authors":"Bhanu Pratap Singh, Jyoti Ranjan Sahoo, Sumeet Mishra","doi":"10.1016/j.ijplas.2024.104215","DOIUrl":null,"url":null,"abstract":"A thorough framework for addressing the evolution of crystallographic texture in high nitrogen steels is developed in the present work. The elementary doctrine of the proposed framework is the inclusion of latent hardening due to slip-slip interaction along with slip-twin interaction in the visco-plastic self-consistent (VPSC) model for simulating the evolution of crystallographic texture in high nitrogen steels. The latent hardening due to slip-slip interaction is accounted for by specifying the complete interaction matrix (12 × 12), which allows all possible interactions between different slip systems. The latent hardening due to slip-slip interaction acts in combination with the latent hardening due to slip-twin interaction in raising the deformation resistance of the slip systems, which in turn enhances the propensity of twinning for the orientations along the β-fiber between the ideal Copper and S position. As a result, these β-fiber orientations are destabilized and reorient towards the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span>-fiber orientations in the Euler space. The proposed modeling framework is validated against experimental orientation distribution function sections after different rolling reductions. It was observed that inclusion of the combined latent hardening effect provides a superior agreement with the experimental textures compared to the standard approach of considering only the latent hardening due to slip-twin interaction in low stacking fault energy materials. The modeling work is aptly supported by detailed microstructural characterization involving estimation of twin fraction via X-ray line profile analysis, twin characteristics via transmission electron microscopy and the reorientation caused due to twinning via electron back scatter diffraction.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"113 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A thorough framework for addressing the evolution of crystallographic texture in high nitrogen steels is developed in the present work. The elementary doctrine of the proposed framework is the inclusion of latent hardening due to slip-slip interaction along with slip-twin interaction in the visco-plastic self-consistent (VPSC) model for simulating the evolution of crystallographic texture in high nitrogen steels. The latent hardening due to slip-slip interaction is accounted for by specifying the complete interaction matrix (12 × 12), which allows all possible interactions between different slip systems. The latent hardening due to slip-slip interaction acts in combination with the latent hardening due to slip-twin interaction in raising the deformation resistance of the slip systems, which in turn enhances the propensity of twinning for the orientations along the β-fiber between the ideal Copper and S position. As a result, these β-fiber orientations are destabilized and reorient towards the -fiber orientations in the Euler space. The proposed modeling framework is validated against experimental orientation distribution function sections after different rolling reductions. It was observed that inclusion of the combined latent hardening effect provides a superior agreement with the experimental textures compared to the standard approach of considering only the latent hardening due to slip-twin interaction in low stacking fault energy materials. The modeling work is aptly supported by detailed microstructural characterization involving estimation of twin fraction via X-ray line profile analysis, twin characteristics via transmission electron microscopy and the reorientation caused due to twinning via electron back scatter diffraction.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.