Bimetallic Pd–Rh Nanoparticles Supported on Co3O4(111): Atomic Ordering and Stability

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Alexander Simanenko, Jan Škvára, Pankaj Kumar Samal, Lukáš Fusek, Maximilian Kastenmeier, Michal Ronovský, Tomáš Skála, Nataliya Tsud, Sascha Mehl, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Jörg Libuda
{"title":"Bimetallic Pd–Rh Nanoparticles Supported on Co3O4(111): Atomic Ordering and Stability","authors":"Alexander Simanenko, Jan Škvára, Pankaj Kumar Samal, Lukáš Fusek, Maximilian Kastenmeier, Michal Ronovský, Tomáš Skála, Nataliya Tsud, Sascha Mehl, Viktor Johánek, Josef Mysliveček, Olaf Brummel, Yaroslava Lykhach, Jörg Libuda","doi":"10.1021/acs.jpcc.4c07406","DOIUrl":null,"url":null,"abstract":"We have investigated the atomic ordering and stability of monometallic Rh and Pd nanoparticles and bimetallic Pd@Rh and Rh@Pd core@shell nanoparticles supported on well-ordered Co<sub>3</sub>O<sub>4</sub>(111) films on Ir(100) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy. The thermal stabilities of these model systems are controlled by the electronic metal support interaction associated with charge transfer at the metal/oxide interface. This effect is most pronounced in the Rh/Co<sub>3</sub>O<sub>4</sub>(111) model system. It is associated with the formation of atomically dispersed Rh<sup>3+</sup> species at the metal/oxide interface and the growth of highly dispersed Rh nanoparticles. The system is stable up to 450 K. Annealing of the Rh/Co<sub>3</sub>O<sub>4</sub>(111) model system triggers sintering of the Rh nanoparticles above 450 K and Rh dissolution into the Co<sub>3</sub>O<sub>4</sub>(111) substrate above 550 K. The morphologies of the Pd@Rh and Rh@Pd core@shell nanoparticles are similar to those observed for the Rh/Co<sub>3</sub>O<sub>4</sub>(111) model system. With respect to atomic ordering, the Rh@Pd core@shell nanoparticles are fairly stable, while segregation of Pd in the Pd@Rh core@shell nanoparticles occurs upon annealing to 550 K. Above 550 K, redistribution of the charge at the metal/oxide interface leads to sintering, dissolution of Rh into the Co<sub>3</sub>O<sub>4</sub>(111) substrate and collapse of the core@shell nanoparticles. In particular, phase separation in the Pd@Rh and Rh@Pd core@shell nanoparticles occurs upon annealing above 550 K, yielding Rh-rich and Pd-rich nanoparticles on Co<sub>3</sub>O<sub>4</sub>(111).","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07406","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We have investigated the atomic ordering and stability of monometallic Rh and Pd nanoparticles and bimetallic Pd@Rh and Rh@Pd core@shell nanoparticles supported on well-ordered Co3O4(111) films on Ir(100) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy. The thermal stabilities of these model systems are controlled by the electronic metal support interaction associated with charge transfer at the metal/oxide interface. This effect is most pronounced in the Rh/Co3O4(111) model system. It is associated with the formation of atomically dispersed Rh3+ species at the metal/oxide interface and the growth of highly dispersed Rh nanoparticles. The system is stable up to 450 K. Annealing of the Rh/Co3O4(111) model system triggers sintering of the Rh nanoparticles above 450 K and Rh dissolution into the Co3O4(111) substrate above 550 K. The morphologies of the Pd@Rh and Rh@Pd core@shell nanoparticles are similar to those observed for the Rh/Co3O4(111) model system. With respect to atomic ordering, the Rh@Pd core@shell nanoparticles are fairly stable, while segregation of Pd in the Pd@Rh core@shell nanoparticles occurs upon annealing to 550 K. Above 550 K, redistribution of the charge at the metal/oxide interface leads to sintering, dissolution of Rh into the Co3O4(111) substrate and collapse of the core@shell nanoparticles. In particular, phase separation in the Pd@Rh and Rh@Pd core@shell nanoparticles occurs upon annealing above 550 K, yielding Rh-rich and Pd-rich nanoparticles on Co3O4(111).

Abstract Image

Co3O4(111)负载的双金属Pd-Rh纳米粒子:原子有序和稳定性
我们通过同步辐射光电子能谱和扫描隧道显微镜研究了单金属 Rh 和 Pd 纳米粒子以及双金属 Pd@Rh 和 Rh@Pd 核@壳纳米粒子在 Ir(100) 上有序的 Co3O4(111) 薄膜上的原子有序性和稳定性。这些模型系统的热稳定性受到与金属/氧化物界面电荷转移相关的电子金属支撑相互作用的控制。这种效应在 Rh/Co3O4(111)模型体系中最为明显。它与金属/氧化物界面上原子分散的 Rh3+ 物种的形成以及高度分散的 Rh 纳米粒子的生长有关。对 Rh/Co3O4(111) 模型体系进行退火会引发 Rh 纳米颗粒在 450 K 以上烧结,以及 Rh 在 550 K 以上溶解到 Co3O4(111) 基质中。在原子有序性方面,Rh@Pd 核@壳纳米粒子相当稳定,而 Pd@Rh 核@壳纳米粒子中的 Pd 会在退火至 550 K 时发生偏析。超过 550 K 时,金属/氧化物界面上的电荷再分布会导致烧结、Rh 溶入 Co3O4(111) 基底以及核@壳纳米粒子的坍塌。特别是,在 550 K 以上退火时,Pd@Rh 和 Rh@Pd 核@壳纳米粒子会发生相分离,在 Co3O4(111) 上产生富含 Rh 和 Pd 的纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信