Dominating Role of Carrier Localization over Griffiths Inhomogeneity and Phase Separation on Magnetoresistance in High Entropy Manganites

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Radhamadhab Das, Sujan Sen, Shreyashi Chowdhury, Sudipa Bhattacharya, Sudisha Mondal, Tapas Kumar Mandal, Arup Gayen, Vasundhara Mutta, Md. Motin Seikh
{"title":"Dominating Role of Carrier Localization over Griffiths Inhomogeneity and Phase Separation on Magnetoresistance in High Entropy Manganites","authors":"Radhamadhab Das, Sujan Sen, Shreyashi Chowdhury, Sudipa Bhattacharya, Sudisha Mondal, Tapas Kumar Mandal, Arup Gayen, Vasundhara Mutta, Md. Motin Seikh","doi":"10.1021/acs.jpcc.4c07154","DOIUrl":null,"url":null,"abstract":"The colossal magnetoresistance (CMR) and metal–insulator transitions in electronically correlated manganite oxides are well-known to be driven and improved by coexisting magneto-electronic phases of competitive origin. Such magneto-electronic inhomogeneity or the so-called phase-separated state appears when several physical interactions are simultaneously active. This makes doped manganites extremely sensitive to the parameters like the nature and extent of doping, A-site cation radius (<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E8;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E9;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 1.935em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.764em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.651em, 1001.71em, 2.957em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">⟨</span><span><span style=\"display: inline-block; position: relative; width: 0.969em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑟</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.401em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Normal-italic;\">𝐴</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">⟩</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></script>), A-site size disorder parameter (σ<sup>2</sup>) and the associated local lattice deformation, external pressure, and electric and magnetic fields. The magneto-electronic inhomogeneity is believed to play a crucial role in the emergence of CMR. The Griffiths phase magnetic inhomogeneity possesses an undecided disposition to the emergence of CMR. Here, we report investigation on electrical and magneto-electric transport properties on a series of high entropy manganite (5A<sub>0.2</sub>)MnO<sub>3</sub> of fixed hole doping (40%) with the wide variation in both <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E8;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E9;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 1.935em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.764em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.651em, 1001.71em, 2.957em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">⟨</span><span><span style=\"display: inline-block; position: relative; width: 0.969em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑟</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.401em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Normal-italic;\">𝐴</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">⟩</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></script> and σ<sup>2</sup>. The high-entropy manganite demonstrates a system of extremely exaggerated cationic disordering. Interestingly, among the seven high entropy samples, only (La<sub>0.2</sub>Pr<sub>0.2</sub>Dy<sub>0.2</sub>Sr<sub>0.2</sub>Ba<sub>0.2</sub>)MnO<sub>3</sub> exhibits Griffiths phase behavior, which ruled out the generalization of ionic size disorder-induced genesis of the Griffiths phase. The maximum CMR of −9.10 × 10<sup>3</sup>(%) is observed in the non-Griffiths phase (La<sub>0.2</sub>Sm<sub>0.2</sub>Eu<sub>0.2</sub>Sr<sub>0.2</sub>Ba<sub>0.2</sub>)MnO<sub>3</sub> compared to −4.82 × 10<sup>3</sup>(%) in the (La<sub>0.2</sub>Pr<sub>0.2</sub>Dy<sub>0.2</sub>Sr<sub>0.2</sub>Ba<sub>0.2</sub>)MnO<sub>3</sub> Griffiths phase. This suggests that the Griffiths phase is not a necessary precursor for the CMR effect. The magnetic state in (5A<sub>0.2</sub>)MnO<sub>3</sub> is attributed to the ferromagnetic cluster formation due to the fragmented long-range exchange pathway rather than coexisting ferromagnetic and antiferromagnetic type inhomogeneity. The carrier localization in fragmented clusters plays a primordial role in the CMR effect. The ferromagnetic cluster formation critically depends on both the <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E8;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;&amp;#x27E9;&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 1.935em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.764em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.651em, 1001.71em, 2.957em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">⟨</span><span><span style=\"display: inline-block; position: relative; width: 0.969em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.4em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑟</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.401em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Normal-italic;\">𝐴</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">⟩</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">⟨</mo><msub><mi>r</mi><mi>A</mi></msub><mo stretchy=\"false\">⟩</mo></math></script> and σ<sup>2</sup>. The σ<sup>2</sup> is crucial to improve MR. The observed CMR in several (5A<sub>0.2</sub>)MnO<sub>3</sub> is higher than the best-known values for conventional bulk manganites. The high temperature resistivity can be better described by a variable range hopping model.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"41 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07154","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The colossal magnetoresistance (CMR) and metal–insulator transitions in electronically correlated manganite oxides are well-known to be driven and improved by coexisting magneto-electronic phases of competitive origin. Such magneto-electronic inhomogeneity or the so-called phase-separated state appears when several physical interactions are simultaneously active. This makes doped manganites extremely sensitive to the parameters like the nature and extent of doping, A-site cation radius (rA), A-site size disorder parameter (σ2) and the associated local lattice deformation, external pressure, and electric and magnetic fields. The magneto-electronic inhomogeneity is believed to play a crucial role in the emergence of CMR. The Griffiths phase magnetic inhomogeneity possesses an undecided disposition to the emergence of CMR. Here, we report investigation on electrical and magneto-electric transport properties on a series of high entropy manganite (5A0.2)MnO3 of fixed hole doping (40%) with the wide variation in both rA and σ2. The high-entropy manganite demonstrates a system of extremely exaggerated cationic disordering. Interestingly, among the seven high entropy samples, only (La0.2Pr0.2Dy0.2Sr0.2Ba0.2)MnO3 exhibits Griffiths phase behavior, which ruled out the generalization of ionic size disorder-induced genesis of the Griffiths phase. The maximum CMR of −9.10 × 103(%) is observed in the non-Griffiths phase (La0.2Sm0.2Eu0.2Sr0.2Ba0.2)MnO3 compared to −4.82 × 103(%) in the (La0.2Pr0.2Dy0.2Sr0.2Ba0.2)MnO3 Griffiths phase. This suggests that the Griffiths phase is not a necessary precursor for the CMR effect. The magnetic state in (5A0.2)MnO3 is attributed to the ferromagnetic cluster formation due to the fragmented long-range exchange pathway rather than coexisting ferromagnetic and antiferromagnetic type inhomogeneity. The carrier localization in fragmented clusters plays a primordial role in the CMR effect. The ferromagnetic cluster formation critically depends on both the rA and σ2. The σ2 is crucial to improve MR. The observed CMR in several (5A0.2)MnO3 is higher than the best-known values for conventional bulk manganites. The high temperature resistivity can be better described by a variable range hopping model.

Abstract Image

高熵锰中载流子局部化对Griffiths不均匀性和相分离的主导作用
众所周知,电子相关锰酸盐氧化物中的巨大磁阻(CMR)和金属-绝缘体转变是由共存的竞争性磁电相驱动和改善的。当几种物理相互作用同时起作用时,就会出现这种磁电子不均匀性或所谓的相分离状态。这使得掺杂锰酸盐对各种参数极为敏感,如掺杂的性质和程度、A-位阳离子半径(⟨𝑟𝐴⟩⟨rA⟩⟨rA⟩)、A-位尺寸无序参数(σ2)和相关的局部晶格变形、外部压力以及电场和磁场。磁电子不均匀性被认为在 CMR 的出现中起着至关重要的作用。格里菲斯相磁不均匀性对 CMR 的出现具有不确定性。在此,我们报告了一系列固定空穴掺杂(40%)且⟨Ps_27E8↩𝑟𝐴⟩⟨rA⟩⟨rA⟩和σ2变化较大的高熵锰矿(5A0.2)MnO3的电学和磁电传输特性研究。高熵锰矿展示了一个极其夸张的阳离子无序系统。有趣的是,在七个高熵样品中,只有(La0.2Pr0.2Dy0.2Sr0.2Ba0.2)MnO3表现出格里菲斯相行为,这排除了离子尺寸无序诱导格里菲斯相生成的普遍性。在非格里菲斯相(La0.2Sm0.2Eu0.2Sr0.2Ba0.2)MnO3 中观察到的最大 CMR 为 -9.10 × 103(%),而在(La0.2Pr0.2Dy0.2Sr0.2Ba0.2)MnO3 格里菲斯相中为 -4.82 × 103(%)。这表明格里菲斯相不是 CMR 效应的必要前体。(5A0.2)MnO3中的磁态归因于长程交换途径碎片化导致的铁磁团簇形成,而不是铁磁和反铁磁型不均匀性共存。碎片簇中的载流子定位在 CMR 效应中起着首要作用。铁磁簇的形成关键取决于⟨𝑟𝐴⟩⟨rA⟩⟨rA⟩和σ2。σ2对改善磁共振至关重要。在几种 (5A0.2)MnO3 中观察到的 CMR 值高于传统块状锰酸盐的已知最佳值。高温电阻率可以用变程跳变模型更好地描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信