{"title":"Mechanism and kinetics of sodium diffusion in Na-feldspar from neural network based atomistic simulations","authors":"Alexander Gorfer, Rainer Abart, Christoph Dellago","doi":"10.1016/j.actamat.2024.120657","DOIUrl":null,"url":null,"abstract":"Alkali diffusion is a first-order control for microstructure and compositional evolution of feldspar during cooling from high temperatures of primary magmatic or metamorphic crystallization, and knowledge of the respective diffusion coefficients is crucial for reconstructing thermal histories. Our understanding of alkali diffusion in feldspar is, however, hindered by an insufficient grasp of the underlying diffusion mechanisms. We performed molecular dynamics simulations of sodium feldspar (Albite) containing different point defects using a recently developed neural network potential. A high degree of agreement between the sodium self-diffusion coefficients obtained from model simulations and those determined experimentally in earlier studies motivated a detailed investigation into the interstitial and vacancy mechanisms, corresponding jump rates, correlation factors and anisotropy. We identified a dumbbell shaped double occupancy of an alkali site as an important point defect and a correlation effect originating from the orientation of the dumbbell as a possible cause for the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x22A5;</mo><mspace width=\"-0.16667em\" is=\"true\" /><mspace width=\"-0.16667em\" is=\"true\" /><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">001</mn><mo is=\"true\">)</mo></mrow><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&gt;</mo><mspace width=\"0.16667em\" is=\"true\" /><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&#x22A5;</mo><mspace width=\"-0.16667em\" is=\"true\" /><mspace width=\"-0.16667em\" is=\"true\" /><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">010</mn><mo is=\"true\">)</mo></mrow></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 7229.8 1196.3\" width=\"16.792ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22A5\"></use></g><g is=\"true\"></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(722,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use></g><g is=\"true\" transform=\"translate(389,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1891,0)\"><use xlink:href=\"#MJMAIN-29\"></use></g></g><g is=\"true\" transform=\"translate(3281,0)\"><use xlink:href=\"#MJMAIN-3E\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(4226,0)\"><use xlink:href=\"#MJMAIN-22A5\"></use></g><g is=\"true\"></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(4949,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use></g><g is=\"true\" transform=\"translate(389,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1891,0)\"><use xlink:href=\"#MJMAIN-29\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">⊥</mo><mspace is=\"true\" width=\"-0.16667em\"></mspace><mspace is=\"true\" width=\"-0.16667em\"></mspace><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">001</mn><mo is=\"true\">)</mo></mrow><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">></mo><mspace is=\"true\" width=\"0.16667em\"></mspace><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">⊥</mo><mspace is=\"true\" width=\"-0.16667em\"></mspace><mspace is=\"true\" width=\"-0.16667em\"></mspace><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">010</mn><mo is=\"true\">)</mo></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">⊥</mo><mspace width=\"-0.16667em\" is=\"true\"></mspace><mspace width=\"-0.16667em\" is=\"true\"></mspace><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">001</mn><mo is=\"true\">)</mo></mrow><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">></mo><mspace width=\"0.16667em\" is=\"true\"></mspace><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">⊥</mo><mspace width=\"-0.16667em\" is=\"true\"></mspace><mspace width=\"-0.16667em\" is=\"true\"></mspace><mrow is=\"true\"><mo is=\"true\">(</mo><mn is=\"true\">010</mn><mo is=\"true\">)</mo></mrow></mrow></math></script></span> diffusion anisotropy reported in numerous feldspar cation diffusion experiments.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"22 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120657","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alkali diffusion is a first-order control for microstructure and compositional evolution of feldspar during cooling from high temperatures of primary magmatic or metamorphic crystallization, and knowledge of the respective diffusion coefficients is crucial for reconstructing thermal histories. Our understanding of alkali diffusion in feldspar is, however, hindered by an insufficient grasp of the underlying diffusion mechanisms. We performed molecular dynamics simulations of sodium feldspar (Albite) containing different point defects using a recently developed neural network potential. A high degree of agreement between the sodium self-diffusion coefficients obtained from model simulations and those determined experimentally in earlier studies motivated a detailed investigation into the interstitial and vacancy mechanisms, corresponding jump rates, correlation factors and anisotropy. We identified a dumbbell shaped double occupancy of an alkali site as an important point defect and a correlation effect originating from the orientation of the dumbbell as a possible cause for the diffusion anisotropy reported in numerous feldspar cation diffusion experiments.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.