Multi-feature fusion for the evaluation of strategic nodes and regional importance in maritime networks

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Shu Guo, Jing Lyu, Xuebin Zhu, Hanwen Fan
{"title":"Multi-feature fusion for the evaluation of strategic nodes and regional importance in maritime networks","authors":"Shu Guo, Jing Lyu, Xuebin Zhu, Hanwen Fan","doi":"10.1016/j.chaos.2024.115902","DOIUrl":null,"url":null,"abstract":"Node importance has been a widespread research topic owing to the impact of uncertainties and accidents on supply chains during maritime transport. Although the analysis and investigation of critical nodes using complex network theory is mature and systematic, there is often a lack of multiscale node identification models and theoretical frameworks. This paper proposes a novel quantitative analysis framework and process for node importance by fusing multiple features. Node importance is determined by interdependence, risk sensitivity, and spatial conflict. These three dimensions consider the network topology, node robustness, and transportation environment stability. A case study of the Belt and Road Initiative shipping network verified the validity and feasibility of this framework. The results indicated that the importance of nodes can be represented by their heterogeneity. Critical regions strongly coincide with the distribution of major global straits and transportation routes. Notably, the similarity of results under multi-features improves the accuracy of identifying critical nodes and regions within the complex network, whereas the differences compensate for the shortcomings of the single-dimensional approach. This provides actionable insights and guidance for stakeholders to build stability in maritime supply chains.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"79 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115902","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Node importance has been a widespread research topic owing to the impact of uncertainties and accidents on supply chains during maritime transport. Although the analysis and investigation of critical nodes using complex network theory is mature and systematic, there is often a lack of multiscale node identification models and theoretical frameworks. This paper proposes a novel quantitative analysis framework and process for node importance by fusing multiple features. Node importance is determined by interdependence, risk sensitivity, and spatial conflict. These three dimensions consider the network topology, node robustness, and transportation environment stability. A case study of the Belt and Road Initiative shipping network verified the validity and feasibility of this framework. The results indicated that the importance of nodes can be represented by their heterogeneity. Critical regions strongly coincide with the distribution of major global straits and transportation routes. Notably, the similarity of results under multi-features improves the accuracy of identifying critical nodes and regions within the complex network, whereas the differences compensate for the shortcomings of the single-dimensional approach. This provides actionable insights and guidance for stakeholders to build stability in maritime supply chains.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信