Research on synchronization in a Josephson junction-memristor system with dual capacitive membranes

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhenpu Liu, Shu Zhou, Rui Zhu, Guodong Huang, Yuan Chai
{"title":"Research on synchronization in a Josephson junction-memristor system with dual capacitive membranes","authors":"Zhenpu Liu,&nbsp;Shu Zhou,&nbsp;Rui Zhu,&nbsp;Guodong Huang,&nbsp;Yuan Chai","doi":"10.1016/j.chaos.2024.115918","DOIUrl":null,"url":null,"abstract":"<div><div>Neuronal synchronization plays a pivotal role in brain function, yet conventional neuron models often overlook crucial membrane properties when considering synchronization. There is a need for a comprehensive exploration of the effects of Josephson junctions (JJ) and memristors in nonlinear circuits, particularly in elucidating synchronization states, to better understand this aspect of neuronal behavior. This research employs a dual-capacitance neuron model, integrating memristors and JJ, to investigate their collective influence in coupled systems. By adjusting the gain ratio of coupling strength, introducing noise, and modulating external stimuli, a detailed investigation into neuronal dynamic behaviors and synchronization patterns is undertaken. The findings illustrate that neuronal synchronization is intricately influenced by the ratio of coupling strength, noise levels, and external stimuli. Optimal synchronization occurs with moderate stimuli and coupling gain ratios, while excessive levels inhibit synchronization, resulting in delayed synchronization onset. Moreover, the study demonstrates the system's robustness against Gaussian white noise models. These findings have broad implications, spanning from the diagnosis and treatment of neurological disorders to advancements in brain-machine interfaces and neural modulation therapies. Understanding neuronal synchronization not only enhances cognitive functions but also paves the way for innovative solutions in neurological interventions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115918"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792401470X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal synchronization plays a pivotal role in brain function, yet conventional neuron models often overlook crucial membrane properties when considering synchronization. There is a need for a comprehensive exploration of the effects of Josephson junctions (JJ) and memristors in nonlinear circuits, particularly in elucidating synchronization states, to better understand this aspect of neuronal behavior. This research employs a dual-capacitance neuron model, integrating memristors and JJ, to investigate their collective influence in coupled systems. By adjusting the gain ratio of coupling strength, introducing noise, and modulating external stimuli, a detailed investigation into neuronal dynamic behaviors and synchronization patterns is undertaken. The findings illustrate that neuronal synchronization is intricately influenced by the ratio of coupling strength, noise levels, and external stimuli. Optimal synchronization occurs with moderate stimuli and coupling gain ratios, while excessive levels inhibit synchronization, resulting in delayed synchronization onset. Moreover, the study demonstrates the system's robustness against Gaussian white noise models. These findings have broad implications, spanning from the diagnosis and treatment of neurological disorders to advancements in brain-machine interfaces and neural modulation therapies. Understanding neuronal synchronization not only enhances cognitive functions but also paves the way for innovative solutions in neurological interventions.
双电容膜Josephson结-忆阻系统的同步研究
神经元同步在脑功能中起着至关重要的作用,然而传统的神经元模型在考虑同步时往往忽略了关键的膜特性。有必要全面探索约瑟夫森结(JJ)和忆阻器在非线性电路中的作用,特别是在阐明同步状态方面,以更好地理解神经元行为的这一方面。本研究采用双电容神经元模型,集成忆阻器和JJ,研究它们在耦合系统中的集体影响。通过调节耦合强度的增益比、引入噪声和调制外部刺激,对神经元的动态行为和同步模式进行了详细的研究。研究结果表明,神经元同步受到耦合强度、噪声水平和外部刺激的复杂影响。最佳同步发生在适度的刺激和耦合增益比,而过高的水平抑制同步,导致延迟同步开始。此外,研究还证明了系统对高斯白噪声模型的鲁棒性。这些发现具有广泛的意义,从神经系统疾病的诊断和治疗到脑机接口和神经调节疗法的进展。了解神经元同步不仅可以增强认知功能,还可以为神经干预的创新解决方案铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信