Maryne Dupuy, Anaïs Postec, Mathilde Mullard, Aurélie Chantôme, Philippe Hulin, Régis Brion, Maxime Gueguinou, Laura Regnier, Marie Potier-Cartereau, Bénédicte Brounais-Le Royer, Marc Baud'huin, Steven Georges, François Lamoureux, Benjamin Ory, Françoise Rédini, Christophe Vandier, Franck Verrecchia
{"title":"Transcriptional regulation of KCNA2 coding Kv1.2 by EWS::FLI1: involvement in controlling the YAP/Hippo signalling pathway and cell proliferation.","authors":"Maryne Dupuy, Anaïs Postec, Mathilde Mullard, Aurélie Chantôme, Philippe Hulin, Régis Brion, Maxime Gueguinou, Laura Regnier, Marie Potier-Cartereau, Bénédicte Brounais-Le Royer, Marc Baud'huin, Steven Georges, François Lamoureux, Benjamin Ory, Françoise Rédini, Christophe Vandier, Franck Verrecchia","doi":"10.1186/s12964-024-01981-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.2 channel encoded by KCNA2 in a key function of ES development, cell proliferation.</p><p><strong>Methods: </strong>KCNA2 expression in patients and cell lines was measured via bioinformatic analysis (RNA-Seq). The presence of a functional Kv1.2 channel was shown using patch-clamp experiments. Molecular biology approaches were used after EWS::FLI1 silencing to study the transcriptional regulation of KCNA2. Proliferation and cell count assessment were performed using cell biology approaches. KCNA2 silencing (siRNA) and RNA-Seq were performed to identify the signalling pathways involved in the ability of KCNA2 to drive cell proliferation. The regulation of the Hippo signalling pathway by KCNA2 was studied by measuring Hippo/YAP target genes expression, while YAP protein expression was studied with Western-Blot and immunofluorescence approaches.</p><p><strong>Results: </strong>This research identified KCNA2 (encoding for a functional Kv1.2 channel) as highly expressed in ES biopsies and cell lines. The results indicated a correlation between KCNA2 expression and patient survival. The data also demonstrated that KCNA2/Kv1.2 is a direct target of EWS::FLI1, and identified the molecular mechanisms by which this chimeric protein regulates KCNA2 gene expression at the transcriptional level. Furthermore, the results indicated that KCNA2 expression and Kv1.2 activity regulate ES cell proliferation and that KCNA2 expression drives the Hippo/YAP signalling pathway. Using the specific Kv1.2 channel inhibitor (κ-Conotoxin), the results suggested that two complementary mechanisms are involved in this process, both dependently and independently of Kv1.2 functional channels at the plasma membrane.</p><p><strong>Conclusion: </strong>This study is the first to describe the involvement of KCNA2 expression and Kv1.2 channel in cancer development. The study also unveiled the involvement of KCNA2 in the regulation of the Hippo/YAP signalling cascade. Thus, this work suggests that KCNA2/Kv1.2 could be a potential therapeutic target in ES.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"602"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01981-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.2 channel encoded by KCNA2 in a key function of ES development, cell proliferation.
Methods: KCNA2 expression in patients and cell lines was measured via bioinformatic analysis (RNA-Seq). The presence of a functional Kv1.2 channel was shown using patch-clamp experiments. Molecular biology approaches were used after EWS::FLI1 silencing to study the transcriptional regulation of KCNA2. Proliferation and cell count assessment were performed using cell biology approaches. KCNA2 silencing (siRNA) and RNA-Seq were performed to identify the signalling pathways involved in the ability of KCNA2 to drive cell proliferation. The regulation of the Hippo signalling pathway by KCNA2 was studied by measuring Hippo/YAP target genes expression, while YAP protein expression was studied with Western-Blot and immunofluorescence approaches.
Results: This research identified KCNA2 (encoding for a functional Kv1.2 channel) as highly expressed in ES biopsies and cell lines. The results indicated a correlation between KCNA2 expression and patient survival. The data also demonstrated that KCNA2/Kv1.2 is a direct target of EWS::FLI1, and identified the molecular mechanisms by which this chimeric protein regulates KCNA2 gene expression at the transcriptional level. Furthermore, the results indicated that KCNA2 expression and Kv1.2 activity regulate ES cell proliferation and that KCNA2 expression drives the Hippo/YAP signalling pathway. Using the specific Kv1.2 channel inhibitor (κ-Conotoxin), the results suggested that two complementary mechanisms are involved in this process, both dependently and independently of Kv1.2 functional channels at the plasma membrane.
Conclusion: This study is the first to describe the involvement of KCNA2 expression and Kv1.2 channel in cancer development. The study also unveiled the involvement of KCNA2 in the regulation of the Hippo/YAP signalling cascade. Thus, this work suggests that KCNA2/Kv1.2 could be a potential therapeutic target in ES.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.