Irene Rin Mitsiades, Maristela Onozato, A John Iafrate, Daniel Hicks, Doğa C Gülhan, Dennis C Sgroi, Esther Rheinbay
{"title":"ERBB2/HOXB13 co-amplification with interstitial loss of BRCA1 defines a unique subset of breast cancers.","authors":"Irene Rin Mitsiades, Maristela Onozato, A John Iafrate, Daniel Hicks, Doğa C Gülhan, Dennis C Sgroi, Esther Rheinbay","doi":"10.1186/s13058-024-01943-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers. Herein, we studied the expression of HOXB13 in large cohorts of HER2+ and ER- breast cancers.</p><p><strong>Methods: </strong>We investigated gene expression, genomic copy number, mutational signatures, and clinical outcome data in the TGGA and METABRIC breast cancer cohorts. Genomic-based gene amplification data was validated with tri-colored fluorescence in situ hybridization.</p><p><strong>Results: </strong>In the TCGA breast cancer cohort, HOXB13 gene expression was significantly higher in HER2+ versus HER2- breast cancers, and its expression was also significantly higher in the ER- versus ER+ breast cancers. HOXB13 is frequently co-gained or co-amplified with ERBB2. Joint copy gains of HOXB13 and ERBB2 occurred with low-level co-gains or high-level co-amplifications (co-amp), the latter of which is associated with an interstitial loss that includes the tumor suppressor BRCA1. ERBB2/HOXB13 co-amp tumors with interstitial BRCA1 loss exhibit a mutational signature associated with APOBEC deaminase activity and copy number signatures associated with chromothripsis and genomic instability. Among ERBB2-amplified tumors of different tissue origins, ERBB2/HOXB13 co-amp with a BRCA1 loss appeared to be enriched in breast cancer compared to other tumor types. Lastly, patients with ERBB2/HOXB13 co-amplified and BRCA1 lost tumors displayed a significantly shorter progression-free survival (PFS) than those with ERBB2-only amplifications. The difference in PFS was restricted to the ER- subset patients and this difference in PFS was not solely driven by HOXB13 gene expression.</p><p><strong>Conclusions: </strong>HOXB13 is frequently co-gained with ERBB2 at both low-copy number level or as complex high-level amplification with relative BRCA1 loss. ERBB2/HOXB13 amplified, BRCA1-lost tumors are strongly enriched in breast cancer, and patients with such breast tumors experience a shortened PFS.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"26 1","pages":"185"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-024-01943-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers. Herein, we studied the expression of HOXB13 in large cohorts of HER2+ and ER- breast cancers.
Methods: We investigated gene expression, genomic copy number, mutational signatures, and clinical outcome data in the TGGA and METABRIC breast cancer cohorts. Genomic-based gene amplification data was validated with tri-colored fluorescence in situ hybridization.
Results: In the TCGA breast cancer cohort, HOXB13 gene expression was significantly higher in HER2+ versus HER2- breast cancers, and its expression was also significantly higher in the ER- versus ER+ breast cancers. HOXB13 is frequently co-gained or co-amplified with ERBB2. Joint copy gains of HOXB13 and ERBB2 occurred with low-level co-gains or high-level co-amplifications (co-amp), the latter of which is associated with an interstitial loss that includes the tumor suppressor BRCA1. ERBB2/HOXB13 co-amp tumors with interstitial BRCA1 loss exhibit a mutational signature associated with APOBEC deaminase activity and copy number signatures associated with chromothripsis and genomic instability. Among ERBB2-amplified tumors of different tissue origins, ERBB2/HOXB13 co-amp with a BRCA1 loss appeared to be enriched in breast cancer compared to other tumor types. Lastly, patients with ERBB2/HOXB13 co-amplified and BRCA1 lost tumors displayed a significantly shorter progression-free survival (PFS) than those with ERBB2-only amplifications. The difference in PFS was restricted to the ER- subset patients and this difference in PFS was not solely driven by HOXB13 gene expression.
Conclusions: HOXB13 is frequently co-gained with ERBB2 at both low-copy number level or as complex high-level amplification with relative BRCA1 loss. ERBB2/HOXB13 amplified, BRCA1-lost tumors are strongly enriched in breast cancer, and patients with such breast tumors experience a shortened PFS.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.