Nina Kastendiek, Roberta Coletti, Thilo Gross, Marta B Lopes
{"title":"Exploring glioma heterogeneity through omics networks: from gene network discovery to causal insights and patient stratification.","authors":"Nina Kastendiek, Roberta Coletti, Thilo Gross, Marta B Lopes","doi":"10.1186/s13040-024-00411-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"56"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00411-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas are primary malignant brain tumors with a typically poor prognosis, exhibiting significant heterogeneity across different cancer types. Each glioma type possesses distinct molecular characteristics determining patient prognosis and therapeutic options. This study aims to explore the molecular complexity of gliomas at the transcriptome level, employing a comprehensive approach grounded in network discovery. The graphical lasso method was used to estimate a gene co-expression network for each glioma type from a transcriptomics dataset. Causality was subsequently inferred from correlation networks by estimating the Jacobian matrix. The networks were then analyzed for gene importance using centrality measures and modularity detection, leading to the selection of genes that might play an important role in the disease. To explore the pathways and biological functions these genes are involved in, KEGG and Gene Ontology (GO) enrichment analyses on the disclosed gene sets were performed, highlighting the significance of the genes selected across several relevent pathways and GO terms. Spectral clustering based on patient similarity networks was applied to stratify patients into groups with similar molecular characteristics and to assess whether the resulting clusters align with the diagnosed glioma type. The results presented highlight the ability of the proposed methodology to uncover relevant genes associated with glioma intertumoral heterogeneity. Further investigation might encompass biological validation of the putative biomarkers disclosed.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.