{"title":"Exploring G Protein-Coupled Receptors in Hematological Cancers.","authors":"Choi Har Tsang, Pawel Kozielewicz","doi":"10.1021/acsptsci.4c00473","DOIUrl":null,"url":null,"abstract":"<p><p>Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 12","pages":"4000-4009"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.