Copper metabolism-related lncRNAs predict prognosis and immune landscape in liver cancer patients.

IF 1.5 4区 医学 Q4 ONCOLOGY
Translational cancer research Pub Date : 2024-11-30 Epub Date: 2024-11-20 DOI:10.21037/tcr-24-611
Rui Luo, Shu Huang, Xiaomin Shi, Huan Xu, Jieyu Peng, Wenjie Lei, Shiqi Li, Wei Zhang, Lei Shi, Yan Peng, Xiaowei Tang
{"title":"Copper metabolism-related lncRNAs predict prognosis and immune landscape in liver cancer patients.","authors":"Rui Luo, Shu Huang, Xiaomin Shi, Huan Xu, Jieyu Peng, Wenjie Lei, Shiqi Li, Wei Zhang, Lei Shi, Yan Peng, Xiaowei Tang","doi":"10.21037/tcr-24-611","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Characterized by its high mortality and easy recurrence, hepatocellular carcinoma (HCC) poses significant clinical challenges. The association between copper metabolism and development of cancer has been identified. However, the underlying mechanisms of copper metabolism-related long non-coding RNAs (CMRLs) in HCC remain elusive. To address the gap, our study analyzed the prognostic and immuno-therapeutic value of CMRLs in HCC.</p><p><strong>Methods: </strong>This research utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data (n=424) for analysis, applying the \"limma\" package in R software for differential gene analysis and construction of a prognostic signature. We validated the signature using training and validation groups stochastically divided at a ratio of 1:1 and assessed prognostic value via Kaplan-Meier, C-index, and receiver operating characteristic (ROC) curves. By multivariate Cox regression, independent prognostic indicators were identified, and a nomogram was formulated for survival forecasting. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated biological pathways, and the immune landscape was examined through multiple algorithms. Finally, drug sensitivity was determined from Genomics of Drug Sensitivity in Cancer (GDSC), with mutation analysis conducted via maftools.</p><p><strong>Results: </strong>In this study, a predictive model based on four pivotal CMRLs (<i>PRRT3-AS1</i>, <i>AC108752.1</i>, <i>AC092115.3</i>, <i>AL031985.3</i>) significantly associated with HCC progression and prognosis was constructed and validated with the overall survival (OS) prediction area under the curve (AUC) values for 1, 3, and 5 years of 0.718, 0.688, and 0.669, respectively. The calibration curves and C-index values showed a solid prognostic ability of the nomogram. The high-risk group was notably higher than the low-risk group both in OS and tumor mutational burdens (TMBs). Moreover, functional annotation enrichment analysis of CMRLs revealed that the signature was mainly associated with mitotic function, chromosome, kinetochore, cell cycle, and oocyte meiosis. Furthermore, therapeutic drugs, including fluorouracil, afatinib, alpelisib, cedranib, crizotinib, erlotinib, gefitinib, and ipatasertib, were found to induce higher sensitivity in high-risk group.</p><p><strong>Conclusions: </strong>The prognostic signature consisting of four CMRLs displays an outstanding predictive performance and improves the precision of immuno-oncology.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 11","pages":"5784-5800"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Characterized by its high mortality and easy recurrence, hepatocellular carcinoma (HCC) poses significant clinical challenges. The association between copper metabolism and development of cancer has been identified. However, the underlying mechanisms of copper metabolism-related long non-coding RNAs (CMRLs) in HCC remain elusive. To address the gap, our study analyzed the prognostic and immuno-therapeutic value of CMRLs in HCC.

Methods: This research utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data (n=424) for analysis, applying the "limma" package in R software for differential gene analysis and construction of a prognostic signature. We validated the signature using training and validation groups stochastically divided at a ratio of 1:1 and assessed prognostic value via Kaplan-Meier, C-index, and receiver operating characteristic (ROC) curves. By multivariate Cox regression, independent prognostic indicators were identified, and a nomogram was formulated for survival forecasting. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated biological pathways, and the immune landscape was examined through multiple algorithms. Finally, drug sensitivity was determined from Genomics of Drug Sensitivity in Cancer (GDSC), with mutation analysis conducted via maftools.

Results: In this study, a predictive model based on four pivotal CMRLs (PRRT3-AS1, AC108752.1, AC092115.3, AL031985.3) significantly associated with HCC progression and prognosis was constructed and validated with the overall survival (OS) prediction area under the curve (AUC) values for 1, 3, and 5 years of 0.718, 0.688, and 0.669, respectively. The calibration curves and C-index values showed a solid prognostic ability of the nomogram. The high-risk group was notably higher than the low-risk group both in OS and tumor mutational burdens (TMBs). Moreover, functional annotation enrichment analysis of CMRLs revealed that the signature was mainly associated with mitotic function, chromosome, kinetochore, cell cycle, and oocyte meiosis. Furthermore, therapeutic drugs, including fluorouracil, afatinib, alpelisib, cedranib, crizotinib, erlotinib, gefitinib, and ipatasertib, were found to induce higher sensitivity in high-risk group.

Conclusions: The prognostic signature consisting of four CMRLs displays an outstanding predictive performance and improves the precision of immuno-oncology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信