CTNND2 gene expression in melanoma tissues and its effects on the malignant biological functions of melanoma cells.

IF 1.5 4区 医学 Q4 ONCOLOGY
Translational cancer research Pub Date : 2024-11-30 Epub Date: 2024-11-27 DOI:10.21037/tcr-24-2159
Jiaojiao Qu, Xianfeng Cheng, Mingyan Liu, Qiang Zhang
{"title":"<i>CTNND2</i> gene expression in melanoma tissues and its effects on the malignant biological functions of melanoma cells.","authors":"Jiaojiao Qu, Xianfeng Cheng, Mingyan Liu, Qiang Zhang","doi":"10.21037/tcr-24-2159","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The catenin delta 2 (<i>CTNND2</i>) gene has been implicated in the progression of various cancers, but its specific role in melanoma has not yet been thoroughly investigated. This study sought to explore the expression and biological function of <i>CTNND2</i> in malignant melanoma tissues to identify new targets or biomarkers for melanoma diagnosis and treatment.</p><p><strong>Methods: </strong>Immunohistochemistry was used to examine the levels of <i>CTNND2</i> in melanoma and adjacent non-tumor tissues. A Western blot analysis was performed to quantify the expression levels of <i>CTNND2</i> in human immortalized keratinocytes and melanoma cell lines. The Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, cell adhesion assay, scratch test, and Transwell assay were used to assess the effects of <i>CTNND2</i> knockdown on the proliferation, adhesion, migration, and invasion of melanoma cells. The Harmonizome database was used to research the biological processes (BPs) involved in <i>CTNND2</i>.</p><p><strong>Results: </strong>In the melanoma tissues, <i>CTNND2</i> expression was substantially upregulated and its levels were closely linked with the pathological features of patients. The <i>CTNND2</i> levels were notably more increased in the melanoma cell lines than the immortalized keratinocytes. The suppression of the <i>CTNND2</i> gene substantially impeded the capacity of the melanoma cells to proliferate, migrate, and invade, and also significantly decreased their potential to attach to collagen I and IV, and fibronectin. The Harmonizome database results revealed a strong correlation between the BPs controlled by <i>CTNND2</i> and the focal adhesion signaling pathway of the cells. The inhibition of the <i>CTNND2</i> gene in melanoma cells resulted in a significant decrease in the phosphorylation of focal adhesion kinase (FAK) and the production of paxillin protein. In the melanoma cells, the reduction of <i>CTNND2</i> did not have a significant effect on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. However, it did considerably prevent the activation of mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) and its downstream molecule extracellular signal-regulated protein kinase 1/2 (ERK1/2).</p><p><strong>Conclusions: </strong>The expression of the <i>CTNND2</i> gene is increased in melanoma tissues, which enhances the ability of melanoma cells to proliferate both <i>in vivo</i> and <i>in vitro</i>. Additionally, the <i>CTNND2</i> gene is crucial in controlling the adhesion process of melanoma cells. This mechanism is associated with the regulation of the FAK and MEK1/2/ERK1/2 signaling pathways. Based on our findings, <i>CTNND2</i> could be used as an oncogene target for melanoma and a new treatment target or diagnostic biomarker.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 11","pages":"6347-6363"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-2159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The catenin delta 2 (CTNND2) gene has been implicated in the progression of various cancers, but its specific role in melanoma has not yet been thoroughly investigated. This study sought to explore the expression and biological function of CTNND2 in malignant melanoma tissues to identify new targets or biomarkers for melanoma diagnosis and treatment.

Methods: Immunohistochemistry was used to examine the levels of CTNND2 in melanoma and adjacent non-tumor tissues. A Western blot analysis was performed to quantify the expression levels of CTNND2 in human immortalized keratinocytes and melanoma cell lines. The Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, cell adhesion assay, scratch test, and Transwell assay were used to assess the effects of CTNND2 knockdown on the proliferation, adhesion, migration, and invasion of melanoma cells. The Harmonizome database was used to research the biological processes (BPs) involved in CTNND2.

Results: In the melanoma tissues, CTNND2 expression was substantially upregulated and its levels were closely linked with the pathological features of patients. The CTNND2 levels were notably more increased in the melanoma cell lines than the immortalized keratinocytes. The suppression of the CTNND2 gene substantially impeded the capacity of the melanoma cells to proliferate, migrate, and invade, and also significantly decreased their potential to attach to collagen I and IV, and fibronectin. The Harmonizome database results revealed a strong correlation between the BPs controlled by CTNND2 and the focal adhesion signaling pathway of the cells. The inhibition of the CTNND2 gene in melanoma cells resulted in a significant decrease in the phosphorylation of focal adhesion kinase (FAK) and the production of paxillin protein. In the melanoma cells, the reduction of CTNND2 did not have a significant effect on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. However, it did considerably prevent the activation of mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) and its downstream molecule extracellular signal-regulated protein kinase 1/2 (ERK1/2).

Conclusions: The expression of the CTNND2 gene is increased in melanoma tissues, which enhances the ability of melanoma cells to proliferate both in vivo and in vitro. Additionally, the CTNND2 gene is crucial in controlling the adhesion process of melanoma cells. This mechanism is associated with the regulation of the FAK and MEK1/2/ERK1/2 signaling pathways. Based on our findings, CTNND2 could be used as an oncogene target for melanoma and a new treatment target or diagnostic biomarker.

CTNND2基因在黑色素瘤组织中的表达及其对黑色素瘤细胞恶性生物学功能的影响
背景:连环蛋白2 (CTNND2)基因与多种癌症的进展有关,但其在黑色素瘤中的具体作用尚未被彻底研究。本研究旨在探讨CTNND2在恶性黑色素瘤组织中的表达和生物学功能,为黑色素瘤的诊断和治疗寻找新的靶点或生物标志物。方法:采用免疫组化方法检测黑色素瘤及邻近非肿瘤组织中CTNND2的水平。Western blot分析定量CTNND2在人永生化角质形成细胞和黑色素瘤细胞系中的表达水平。采用细胞计数试剂盒-8 (CCK-8)实验、平板集落形成实验、细胞粘附实验、划痕实验和Transwell实验评估CTNND2敲低对黑色素瘤细胞增殖、粘附、迁移和侵袭的影响。Harmonizome数据库用于研究CTNND2相关的生物过程(bp)。结果:在黑色素瘤组织中,CTNND2的表达显著上调,其表达水平与患者的病理特征密切相关。CTNND2水平在黑色素瘤细胞系中明显高于永生化角质形成细胞。CTNND2基因的抑制大大阻碍了黑色素瘤细胞增殖、迁移和侵袭的能力,也显著降低了它们附着于I型胶原和IV型胶原以及纤维连接蛋白的潜力。Harmonizome数据库结果显示,CTNND2控制的bp与细胞的局灶黏附信号通路之间存在很强的相关性。在黑色素瘤细胞中抑制CTNND2基因导致局灶黏附激酶(FAK)磷酸化和paxillin蛋白的产生显著降低。在黑色素瘤细胞中,CTNND2的减少对磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B (AKT)信号通路没有显著影响。然而,它确实显著地阻止了丝裂原激活的细胞外信号调节激酶1/2 (MEK1/2)及其下游分子细胞外信号调节蛋白激酶1/2 (ERK1/2)的激活。结论:CTNND2基因在黑色素瘤组织中的表达增加,增强了黑色素瘤细胞在体内和体外的增殖能力。此外,CTNND2基因在控制黑色素瘤细胞的粘附过程中起着至关重要的作用。这一机制与FAK和MEK1/2/ERK1/2信号通路的调控有关。基于我们的研究结果,CTNND2可以作为黑色素瘤的癌基因靶点和新的治疗靶点或诊断生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信